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Abstract

This paper provides new identification results for partially identified models that impose
moment restrictions on the latent variables. The new sharp identification results apply to all
models in this class, including the models to which existing results do not apply. Examples
include discrete choice with subjective expecations and censored regression models. This
novel result builds on the new insight that restrictions on the support of the latent variables
should be explicitly stated and should be treated differently from other moment restrictions.
This paper also shows how to construct the identified set for counterfactual results with
nonparametric distributional assumptions on the latent variables. This method is applicable
to counterfactual analysis in a large class of complete and incomplete structural models,
without the necessity to actually simulate the counterfactual results. Finally, I show that
when the model is discrete, the identification condition can be simplified so that the inference
can be efficiently implemented following recent developments in the literature on large-scale
inference for linear systems.
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1 Introduction

This paper studies the identification for the following model:

P[(U,Z) ∈ Γ(θ)] = 1 and E[r(U,Z; θ)] = 0, (1)

where θ is the parameter, U stands for the vector of unobservable variables, and Z is the
vector of the observables. The parameter space Θ can be an arbitrary space, and the space
of U and Z, denoted as U and Z are Polish spaces. Γ(θ) is a θ-dependent set of (U,Z), which
restricts the support of (U,Z). Given any θ, r(·, ·; θ) is a known function mapping U × Z to
Rdim(r) where dim(r) ≥ 1 is finite. In the following, I call the first restriction in (1) as the
support restriction and the second restrictions as the moment restriction.

The goals of this paper are two-fold. Firstly, I derive the sharp identification results for
models in (1) without imposing any other restrictions on (Γ, r) except for they being measur-
able and well-defined. Secondly, I explore how the framework in (1) can be used to conduct
counterfactual analysis for structural models without specifying parametric distributional as-
sumptions on the latent variables.

The first contribution of this paper is a new set of sharp identification results applicable
to all models which fit in (1). This brings new identification results to models to which
the existing results are not applicable. Examples include discrete choice with subjective
expectations and censored regression models. This is done by revisiting the support-function-
based approach as in Ekeland, Galichon and Henry (2010) and Beresteanu, Molchanov and
Molinari (2011). After I the derive testable restrictions that are satisfied by all parameters
in the identified set, I show that, when formulated properly, any model in (1) can be sharply
characterized by these testable restrictions, in the sense that the identified set and the set of
parameters satisfying the testable restrictions are indistinguishable in finite samples.

This novel identification result brings two new observations to the partial identification
literature. The first observation is that the definition of the sharp identification typically
adopted in the literature could be unnecessarily restrictive for models in (1). After I derive
the testable restrictions which the true parameter must satisfy, I study the difference between
the identified set and the set of parameters satisfying these testable restrictions. The sharp
identification analysis in the literature so far focuses exclusively on the cases when there is
no difference between these two sets. However, I find that, when these two sets differ, the
difference is often so small that there does not exist a test which can distinguish these two
sets in finite samples. This observation enables me to derive sharp identification results under
much weaker regularity conditions than those in the related literature.

The second observation is that, all restrictions on the support of the latent variables should
be explicitly stated and the support restrictions should be treated differently from the moment
restrictions. If any moment restriction implictly restricts the support of the latent variable,
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one should make this restriction explicit and include it in Γ(θ). I show that following this
principle alone is enough to ensure the sharpness of the identification. Reversely, failure to
do so could lead to non-sharp identification results for models which can otherwise be sharply
identified. This observation is not obvious, because the support restrictions can always be
rewritten as an moment restriction. However, it turns out that this principle plays a key role
in the identification analysis. In addition, I show this principle is also related to a condition
that can be easily verified by numerical simulations in practice.

The second contribution of this paper is that it shows how to utilize the framework in (1)
to conduct the counterfactual analysis under nonparametric distributional assumptions on
the latent variables, even if the model is not point identified or has multiple counterfactual
model predictions. The idea is to view the counterfactual outcomes of each individual as
latent variables and treat the model predictions on the counterfactual outcomes as additional
support restrictions. This way of thinking unites the model estimation and counterfactual
analysis, and the identified set for the counterfactual result and other model parameters
can be constructed jointly in one stage. This simple yet powerful idea is not specific to
the identification approach considered in this paper. In fact, it can be easily extended to
work with other identification methods such as Beresteanu, Molchanov and Molinari (2011),
Schennach (2014) and Chesher and Rosen (2017) among others.

Finally, whenever the model is discrete, I show that the identification condition generated
by the support-function-based approach can be greatly simplified and its corresponding in-
ference problem can be transformed into an inference problem for linear systems with known
coefficients. Following the recent developments in the related literature, the inference proce-
dure can be implemented as a series of linear programming problems which greatly alleviates
the computational complexity. See Fang, Santos, Shaikh and Torgovitsky (2020) among oth-
ers in this literature.

This paper is mostly related to Ekeland, Galichon and Henry (2010) and Beresteanu,
Molchanov and Molinari (2011), both of which study the identified set of models similar to
those in (1). The sharp identification result in both of these two papers builds on some
compactness assumptions of the model. The result in Ekeland, Galichon and Henry (2010)
imposes the tightness and uniform integrability restriction on r, and the result in Beresteanu,
Molchanov and Molinari (2011) assumes that Υ(z; θ) := {r(u, z; θ) : (u, z) ∈ Γ(θ)} is an
absolutely integrable random closed set for all θ. All these results exclude models whose
Υ(z; θ) is not compact. In empirical analysis, this non-compactness is not uncommon. For
example, it arises naturally in models where agents make optimal discrete choices based on
subjective expectations, or in regression models where the outcome is one-side censored. See
examples in Section 2. Similar models have also been explored with an optimal transportation
and capacity function approach in Galichon and Henry (2011). More recently, Chesher and
Rosen (2017) discuss similar problems in the framework of generalized IV models and establish
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the equivalence between the use of random sets defined on the space of the observables and
that on the space of the unobservables. They point out the advantage of the latter approach
in deriving the sharp identification conditions. Both this paper and all the papers mentioned
above derive testable restrictions which parameters in the identified set should satisfy, but
this paper differs in how to establish the sharpness for these testable restrictions. All these
papers in the literature focus on cases where the identified set is equal to the set of parameters
satisfying the testable restrictions, but I study when these two sets are indistinguishable in
finite samples. This unique approach enables me to derive much more general identification
results than the existing ones.

While this paper and all the above literature try to characterize the identified set, Schen-
nach (2014) characterizes the moment closure of the identified set using entropy-based ap-
proach under a dominating assumption and some other mild conditions. I will explore the
relation between the identified set and its moment closure later in Section 4, but these two
sets are different in general. By studying when the difference between the identified set and
its moment closure is negligible, this paper complements the theoretical findings in Schennach
(2014).

There is a growing literature on bounding counterfactual outcomes without imposing para-
metric distributions on the unobserved heterogeneity, especially in the context of discrete
choice models. Manski (2007) shows that sharp bounds on counterfactual choice probabilities
can be constructed by solving a linear programming problem given non-parametric constraints
on agents’ preferences revealed in the data. This idea is further developed in Tebaldi, Tor-
govitsky and Yang (2018) which also takes into account the endogeneity in prices. Chiong,
Hsieh and Shum (2017) provide another non-sharp but computationally efficient way to bound
counterfactual market shares based on the cyclic monotonicity implied by the optimality con-
ditions in discrete choice models. More recently, Aguiar and Kashaev (2018) discusses a way
to do counterfactual analysis in the context of the revealed preference axioms, which is simi-
lar to the general approach presented in this paper. Christensen and Connault (2019), which
is concurrent with this paper, develops an alternative entropy-based approach which is able
to conduct the sensitivity analysis of a specific parametric distribution and characterize the
counterfactual outcome under nonparametric distribution assumptions.

This paper is also related to other papers which study the identification in structural
models with nonparametric distributional assumptions on latent variables. Pakes (2010) and
Pakes, Porter, Ho and Ishii (2015) have studied some important empirical models. They
exploit the revealed preference conditions to construct moment inequalities, where some par-
ticular structures in payoff functions and information sets are imposed to cancel or integrate
out the unobserved heterogeneity. The framework in this paper nests all the models they
studied. In Example 1, I revisit one of their models and study the sharp identification results
under various model restrictions.
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As my identification conditions take the form of moment inequalities, this paper also
relates to the literature on moment inequality inference. When the model is discrete, I
show that the inference problem of my method can be transformed into the linear system
inference problem studied in Fang, Santos, Shaikh and Torgovitsky (2020), which can be
efficiently implemented as a sequence of linear programming problems. In small-scale discrete
problems, the identification conditions can also be simplified into a finite number of moment
inequalities. One can then apply inference methods in Chernozhukov, Hong and Tamer
(2007), Andrews and Soares (2010) and recent Chernozhukov, Chetverikov and Kato (2018)
to perform hypothesis testing and construct confidence region. In challenging cases where the
identification conditions involve a continuum of moment inequalities, one could use inference
procedures in Andrews and Shi (2017) and Chernozhukov, Lee and Rosen (2013). If the
moment inequalities are conditional on other instruments, the inference can be conducted by
following Andrews and Shi (2013) and Chernozhukov, Lee and Rosen (2013).

The rest of the paper is organized as follows. Section 2 describes the assumptions which
I impose throughout this paper and introduces a running examples. Section 3 presents the
support-function-based approach and shows that the set of parameters this approach charac-
terizes is equal to the moment closure of the identified set. In Section 4, I study the relation
between the identified set and its moment closure and explain why one should explicit write
down all the support restrictions. Section 5 discusses how one can identify the counterfactual
result in the same way as the structural parameters. Finally, I discuss the implementation of
the inference for the discrete models in Section 6. Section 7 concludes the paper. The proofs
of all the theorems are relegated to the appendix.

2 Assumptions and Motivating Examples

In this section, I am going to introduce the main assumptions and the running example of this
paper. The following notations will be used throughout the paper: I use (Γ, r) to summerize
the model restrictions in (1). The R will denote the real space. The ‖·‖ will stand for the
Euclidean norm. I use the uppercase letters like U and Z for random variables, and their
lowercase like u and z for the specific values of random variables. For any distribution F , the
PF and EF refers to the probability and the expectation evaluated with respect to F .

Let F be a space of the probability distributions for Z. This F space can be the collection
of all possible Borel distributions on Z or the collection of distributions that the researcher
is willing to assume. I assume that the Θ and F satisfy the following regularity conditions.

Assumption 1. Assume dim(r) > 0. In addition, for any θ ∈ Θ and any F ∈ F , assume
the following two conditions hold:

(i) Set Γ(θ) is a Borel set, and Γ(z; θ) defined as Γ(z; θ) := {u ∈ U : (u, z) ∈ Γ(θ)} is a
nonempty Borel set for every z. Moreover, the function r(u, z; θ) is Borel measurable in
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U × Z.

(ii) There exists an Borel measurable function g( · ; θ, F ) such that EF g(Z; θ, F ) < ∞ and
g(z; θ, F ) ≥ inf{‖r(u, z; θ)‖ : u ∈ Γ(z; θ)} for almost every z.

The first condition in Assumption 1 is a basic measurability condition. The second condi-
tion ensures that there exists at least one distributionH for (U,Z) such that PH (U,Z) ∈ Γ(θ))

and function r is integrable with respect to H. These conditions are very weak conditions to
ensure the model in (1) is well-defined.

The first goal of this paper is to characterize the identified set of θ for the model in (1)
given any distribution F in F . Formally, for each θ in Θ and each F ∈ F , define H(θ, F ) to
be the set of all joint distributions H for (U,Z) which satisfy that PH [(U,Z) ∈ Γ(θ)] = 1 and
that H’s marginal distribution for Z equals F . Then, the identified set for any given F can
be defined as follows:

Definition 1 (identified set). For any F ∈ F , the identified set, denoted as ΘI(F ), is the set
of all θ ∈ Θ for which there exists some H ∈ H(θ, F ) such that EH [r(U,Z; θ)] = 0, i.e.

min
H∈H(θ,F )

‖EH [r(U,Z; θ)]‖ = 0. (2)

By definition, for each parameter θ in the identified set, there exists a distributionH which
satisfies all assumptions in (1) and makes it observationally equivalent to the true parameter
θ0. This definition is in line with the definition used in most of the literature. See Roehrig
(1988) and Ekeland, Galichon and Henry (2010) among many others. However, in addition
to the identified set, it turns out that the moment closure defined in the following also plays
an important role in the analysis.

Definition 2 (the moment closure of the identified set). For any F ∈ F , the moment closure
of the identified set, denoted as Θ′I(F ), is the set of all θ ∈ Θ for which the following equation
holds:

inf
H∈H(θ,F )

‖EH [r(U,Z; θ)]‖ = 0. (3)

This moment closure was the main analysis target in Schennach (2014). The main differ-
ence between the identified set and its moment closure is whether there exists a H ∈ H(θ, F )

which satisfies the moment restriction exactly. For an arbitrary θ ∈ Θ′I(F ), the infimum in
(3) may or may not be achieved by an H ∈ H(θ, F ). By definition, ΘI(F ) ⊆ Θ′I(F ), but
the reverse inclusion relation may not be true. Although the difference between ΘI(F ) and
Θ′I(F ) seems to be small in definition, they can be very different in some cases. I will discuss
the relation between ΘI(F ) and Θ′I(F ) in more details in Section 4.

In the rest of the paper, I sometimes abbreviate ΘI(F ) and Θ′I(F ) as ΘI and Θ′I re-
spectively when there is no confusion on the underlying distribution F . I sometimes also
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write ΘI(F ) and Θ′I(F ) respectively as ΘI(F ; Γ, r) and Θ′I(F ; Γ, r) when I need to make their
dependence on the model (Γ, r) explicit.

The framework in (1) covers a large class of structural models. I list two examples in the
following.

Example 1 (binary choice model with subjective expectation). Consider a binary choice
model in which agents have limited information when making decisions. Let Yi ∈ {0, 1} be
agent i’s choice. When Yi = 1, the payoff πi of player i is

πi = X ′iβ − α

where Xi are some observable covariates and (α, β) are parameters to be estimated. When
Yi = 0, πi is normalized to 0. Assume that, the agent i does not know the exact value of
πi when making decisions. Instead, the decision is based on agent i’s subjective expectation
Es[πi]. Assume agent i chooses optimally, i.e.

Yi =

1 if Es[πi] > 0,

0 if Es[πi] < 0.
(4)

Assume also that the agent’s expectation is rational. That is, if we define the expectation
error as Ui := Es[πi]− πi, then E[Ui|Yi] = 0 almost surely.

This simple example has been studied in the literature. See, for example, Pakes (2010)
and Pakes et al. (2015). Later in this paper, I will derive the sharp identification result for
this model using the method in this paper. In Appendix A.2, I consider a more complicated
version of this model where there also exists some payoff shocks that is not observabled in
the data but is known to the agent when he/she chooses Yi.

To see how this example fits into my framework, let Zi := (Yi, Xi) be the collection of
observed variables and let θ := (α, β) be the vector of all parameters. Then, the optimality
condition in (4) implies the following support restriction on (Ui, Zi),

P[(Ui, Zi) ∈ Γ(θ)] = 1, where Γ(θ) = {(ui, zi) : (−1)yi [x′iβ − α+ Ui] ≤ 0}. (5)

Moreover, the rational expectation implies the following moment restriction:

Er(Ui, Zi; θ) = 0, where r(Ui, Zi; θ) =

(
1(Yi = 1)Ui

1(Yi = 0)Ui

)
.

�

Example 2 (censored regression). Consider the following regression model:

Y ∗ = X ′θ + ε
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where X is a vector of observable covariates, ε is the residual. Assume that we can only
observe Y = max(Y ∗, C) where C is an observable random variable. Assume that E[Wε] = 0

where W is a vector of instrumental variables which could overlap with X and/or C.
This model is related to but different from the interval censored regression model that have

been widely studied in the literature, because the Y ∗ is only censored on one side. Analysis
on the interval censored regression model can be found in Tamer (2010), Ponomareva and
Tamer (2011) and Bontemps, Magnac and Maurin (2012). See also the discussions in Molinari
(2020) and Chesher and Rosen (2020).

To see how this example fits into the framework, let U := (Y ∗, ε) collects all the unobserv-
ables, and let Z := (X,Y,C,W ) collects all the observables. Then, the support restriction of
this model is P[(U,Z) ∈ Γ(θ)] = 1 where

Γ(θ) :=
{

(u, z) : y∗ = x′θ + ε and y = max(y∗, c)
}
.

And, the moment restriction is E[r(U,Z; θ)] = 0 where r(U,Z; θ) = Wε. �

3 Support-Function-Based Approach

In this section, I consider an identification approach for the model in (1) which turns out be
similar to the identification strategy in Ekeland, Galichon and Henry (2010) and Beresteanu,
Molchanov and Molinari (2011). However, the result which I am going to derive in this
and the next sections builds on much weaker assumptions and covers a much wider range of
models. In particular, it does not depend on the closedness and the absolute integrability
assumptions as in these two papers.

For any F in F , let θ be an arbitrary element in ΘI(F ). Then, there exists some H
in H(θ, F ) such that EHr(U,Z; θ) = 0. Define S to be the unit sphere in Rdim(r), i.e.
S := {λ ∈ Rdim(r) : ‖λ‖ = 1}. Then, EHr(U,Z; θ) = 0 is equivalent to the following
condition:

∀λ ∈ S, EH [λ′r(U,Z; θ)] = 0, (6)

where λ′ stands for the transpose of vector λ. Recall Γ(z; θ) = {u : (u, z) ∈ Γ(θ)}. Define
function γ as γ(λ, z; θ) := supu∈Γ(z;θ) λ

′r(u, z; θ), which is the support function of {r(u, z; θ) :

(u, z) ∈ Γ(θ)} given z. Then, PH [(U,Z) ∈ Γ(θ)] = 1 implies that

∀λ ∈ S, PH
(
λ′r(U,Z; θ) ≤ γ(λ, Z; θ)

)
= 1. (7)

Equation (6) and (7) then imply that:

∀λ ∈ S, EHγ(λ, Z; θ) ≥ EH [λ′r(U,Z; θ)] = 0. (8)

Because γ(λ, ·; θ) is a function which only depends on z and the marginal distribution of H
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on Z is equivalent to F , the condition in (8) is then equal to EFγ(λ, Z; θ) ≥ 0 for all λ ∈ S,
or, equivalently,

inf
λ∈S

EFγ(λ, Z; θ) ≥ 0. (9)

The condition in (9) can be viewed as a group of moment equalities and inequalities which
only depends on the observables and the parameters. The above derivation shows that (9) is
a testable restriction which parameters in the identified set must satisfy. That is, ΘI(F ) ⊆
{θ ∈ Θ : θ satisfy Condition (9)}. In the following theorem, I go one step beyond this result
and characterize exactly what θ satisfies Condition (9).

Theorem 1. Suppose Assumption 1 holds. Then, for any F ∈ F ,

Θ′I(F ) = {θ ∈ Θ : θ satisfy Condition (9)}.

Theorem 1 shows that Condition (9) is an exact characterization of the moment closure of
the identified set under very weak conditions. This result suggests that to study the property
of the set of parameters which satisfies (9), one only needs to study the property of the
moment closure Θ′I . Moreover, note that the properties of Θ′I are, in fact, intrinsic properties
of model (Γ, r) instead of the properties of any specific identification strategy.

4 Relation Between ΘI and Θ′I

Given Theorem 1, the usefulness of Condition (9) depends on how close the identified set ΘI

and its moment closure Θ′I are. As shown later, Θ′I is generally different from ΘI . In addition,
the difference between ΘI and Θ′I can be quite small in some cases, and quite large in some
other cases. Before I derive more theoretical results, I would like to present the following two
heuristic examples which are intentionally constructed as simple as possible for illustration.
However, the findings which I draw from these examples would apply to more complicated
structural models.

Example 3. In this example, I will construct a simple model where ΘI 6= Θ′I but the
difference between these two is negligible. Consider a model that consists of random variable
(U,X, Y ), where U is unobserved and (X,Y ) are observable. The space of Y is the binary
set {0, 1}. Suppose the support of (U,X, Y ) satisfies the following restriction almost surely:

U ∈

[X,+∞) if Y = 1,

(−∞, X] if Y = 0.

Moreover, let the moment restriction be E[Φ(U)− θ] = 0 where Φ is the cdf of the standard
normal distribution. Let F be the set of all possible distributions of (X,Y ) and let Θ = R.
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In this example, one can show that, for any F ∈ F ,

ΘI(F ) =
(
EF [1(Y = 1)Φ(X)], EF [1(Y = 0)Φ(X) + 1(Y = 1)]

)
.

Its lower and the upper bounds cannot be achieved exactly, but any θ close to the lower bound
can be achieved by constructing a data generating process where U = 1(Y = 1)X + 1(Y =

0)(X − q) and let q be a large enough number. Any θ close to the upper bound can be
achieved in a similar way.

The Θ′I(F ) in this example is

Θ′I(F ) =
[
EF [1(Y = 1)Φ(X)], EF [1(Y = 0)Φ(X) + 1(Y = 1)]

]
,

which is almost the same as ΘI(F ) except that it is a closed interval. This Θ′I(F ) can be
solved using Theorem 1. Although ΘI(F ) 6= Θ′I(F ), their difference is so small that it is
negligible in almost all empirical contexts. �

Example 4. In this example, I will construct a simple model where the difference between
ΘI and Θ′I is considerable. Let U be an unobserved random variable and (Z1, Z2) be two
observable random variable. Consider a model (Γ, r) with

Γ(θ) = R3 and r(u, z1, z2; θ) =

(
1(z1 ≤ u ≤ z2)− 1

u− θ

)
.

Let Θ = R. And, let F be the distribution of (Z1, Z2) where EF |Z1| < ∞, EF |Z2| < ∞ and
PF (Z1 ≤ Z2) = 1.

In this example, the moment restriction E[r(U,Z1, Z2; θ)] = 0 implies that P(U ∈ [Z1, Z2]) =

1. Therefore, for any F ∈ F , ΘI(F ) = [EFZ1,EFZ2]. At the same time, one can solve the
support function γ(λ, Z1, Z2; θ) in this example as

γ(λ, z1, z2; θ) =

max(0,−λ1) if λ2 = 0

+∞ if λ2 6= 0
(10)

where λ = (λ1, λ2) and λi is the multiplier corresponds to the ith dimension of r(u, z1, z2; θ).
Equation (10) implies that Eγ(λ, Z1, Z2; θ) ≥ 0 for any λ ∈ S and any θ ∈ R. That is,
Condition (9) is satisfied for any θ ∈ R. Therefore, Theorem 1 implies that Θ′I(F ) = R,
which is much larger than ΘI(F ). �

Given the difference between ΘI and Θ′I illustrated above, there are two ways to proceed:
One way is to find sufficient conditions under which ΘI = Θ′I . This way is in line with
most sharp identification results in the literature including those in Ekeland, Galichon and
Henry (2010), Beresteanu, Molchanov and Molinari (2011) and Chesher and Rosen (2017).
Another way is to study when the difference between ΘI and Θ′I is so small that it is negli-
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gible for the purpose of empirical analysis. In the following, I will present results following
both approaches, but I consider the result in the second approach more empirically relevant.
Moreover, although the analysis in the second approach is more challenging, it builds on much
weaker assumptions and leads to more interpretable results.

4.1 when is ΘI equal to Θ′I ?

The following assumption is a sufficient condition for ΘI = Θ′I .

Assumption 2. For any θ ∈ Θ and any F ∈ F , the following two conditions hold:

(i) For almost every z, {r(u, z; θ) : u ∈ Γ(z; θ)} is a closed set.

(ii) There exists an Borel measurable function g(·; θ) such that EF g(Z; θ) < ∞ and for
almost every z,

g(z; θ) ≥ sup{‖r(u, z; θ)‖ : u ∈ Γ(z; θ)}.

Theorem 2. Suppose Assumptions 1 and 2 hold. Then, ΘI(F ) = Θ′I(F ) for all F ∈ F .

Assumption 2 is the same as the closedness and the absolute integrability condition im-
posed in Beresteanu, Molchanov and Molinari (2011), except that it does not involve the
non-atomic restrictions therein. Because Assumption 2 implies that {r(u, z; θ) : u ∈ Γ(z; θ)}
should be a compact set almost surely, it essentially rules out models with noncompat
{r(u, z; θ) : u ∈ Γ(z; θ)}. The limitation of Assumption 2 can also be illustrated by the
examples in Section 2.

Example 1 (continued). In Example 1, one can show that

{r(u, z; θ) : u ∈ Γ(z; θ)} =

{(r1, 0) : r1 ≥ −x′iβ + α} if Yi = 1

{(0, r2) : r2 ≤ −x′iβ + α} if Yi = 0

Because {r(u, z; θ) : u ∈ Γ(z; θ)} is unbounded with probability 1, Assumption 2 does not
hold in this example. However, the failure of Assumption 2 does not mean that the model in
Example 1 does not have any empirical content. As shown in Appendix A.1, Condition (9)
in this example can be simplified as

E[1(Yi = 1)(X ′iβ − α)] ≥ 0,

E[1(Yi = 0)(X ′iβ − α)] ≤ 0.
(11)

Due to Theorem 1, we know Θ′I is the set of (β, α) that satisfies the above two moment
inequalities. The question is whether ΘI is close or equal to Θ′I . Because Assumption 2 fails
to hold here, Theorem 2 cannot tell us whether these moment inequalities are also the sharp
characterization of ΘI . �
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Example 2 (continued). In Example 2, one can show that

{r(u, z; θ) : u ∈ Γ(z; θ)} =

{W (Y −X ′θ)} if Y > C

{Wε : ε ≤ C −X ′θ} if Y = C

To rule out the trivial case, assume P(Y = C) > 0 and P(W = 0|Y = C) < 1. Then,
{r(u, z; θ) : u ∈ Γ(z; θ)} is going to be unbounded with positive probability, which again
leads to the failure of Assumption 2.

As before, let us take a look at Condition (9) in this example. Define S+ as S+ := {λ :

‖λ‖ = 1 and P(λ′W ≥ 0|Y = C) = 1}. Then, Condition (9) in this example can be simplified
as

λ′EW (Y −X ′θ) ≥ 0, ∀λ ∈ S+. (12)

Whether this condition is informative or not, depends on supp(W |Y = C), i.e. the support
of W conditional on the event that Y is censored. In the special case where supp(W |Y =

C) = Rdim(W ), S+ is an empty set so that (12) does not impose any restrictions. Although
we know from Theorem 1 that (12) characterizes the parameters in Θ′I , we still want to
know whether (12) also characterizes the parameters in ΘI . In particular, in the case where
supp(W |Y = C) = Rdim(W ), we want to know whether the lack of informativeness is due to
the fact that Condition (9) is not a sharp characterization for ΘI in this example, or it is just
that the assumptions that we imposed have little empirical content in the first place. �

The above example illustrates the limitation of Assumption 2. On the other hand, if any
of the two conditions in Assumption 2 is dropped, there are counterexamples where ΘI 6= Θ′I .
Example 3 violates the first condition in Assumption 2, and Example 4 violates the second
condition in Assumption 2. These counterexamples suggests that restrictions similar to those
in Assumption 2 is inevitable if the goal is to ensure Θ′I = ΘI . Therefore, to be able to
say something about all models, especially the models where {r(u, z; θ) : u ∈ Γ(z; θ)} is
noncompact, I will switch to the second approach in the following section.

4.2 when are ΘI and Θ′I indistinguishable?

In this section, I am going to study when Θ′I is sufficiently close to ΘI so that these two
sets are not distinguishable in finite samples. As I will show later in Theorem 4, unlike the
previous result which assumes compactness, Θ′I and ΘI are indistinguishable under very weak
conditions. In fact, all that is needed is to ensure that the restrictions on the support of the
latent variables have been explicitly included in Γ and none of the moment restrictions in
(1) implicitly restricts the support of the latent variable. I will also present some interesting
lemmas and easy verifiable conditions along the way.

To define the finite-sample indistinguishability formally, consider an i.i.d. sample Z1, ..., Zn

where n is the sample size. For any θ ∈ Θ, define Fθ := {F ∈ F : θ ∈ ΘI(F )} and
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F ′θ := {F ∈ F : θ ∈ Θ′I(F )}. Then, testing θ ∈ ΘI(F ) is equivalent to testing F ∈ Fθ.
Similarly, θ ∈ Θ′I(F ) is equivalent to F ∈ F ′θ. Let φn be the critical function of a (randomized)
test with φn(Z1, ..., Zn) ∈ [0, 1]. For any θ ∈ Θ, the size of the test under the null hypothesis
H0 : θ ∈ ΘI(F ) is supF∈Fθ EFφn. Because ΘI(F ) ⊆ Θ′I(F ) for any F , we know Fθ ⊆ F ′θ so
that the following inequality is always true:

sup
F∈Fθ

EFφn ≤ sup
F∈F ′θ

EFφn.

If the above weak inequality is in fact an equality, then the test φn would have no power
against the alternative hypothesis H1 : θ ∈ Θ′I(F )\ΘI(F ). In other words, the test φn cannot
distinguish θ ∈ ΘI from θ ∈ Θ′I in finite samples.

Definition 3. For any θ ∈ Θ, I say that it is impossible to distinguish θ ∈ ΘI from θ ∈ Θ′I
in finite samples if for any test φn, supF∈Fθ EFφn = supF∈F ′θ

EFφn. If this is true for all θ,
then I say that it is impossible to distinguish ΘI and Θ′I in finite samples.

For F† ∈ {Fθ,F ′θ}, I use the following convention: if F† is empty, then supF∈F† EFφn =

−∞. Therefore, in the trivial case where F ′θ is empty and, hence, Fθ is empty, it is impossible
to distinguish θ ∈ ΘI from θ ∈ Θ′I in finite samples.

In the following, I am going to derive conditions under which θ ∈ ΘI and θ ∈ Θ′I are
not distinguishable in finite samples. Note that, although the function r in model (Γ, r) can
depend on U , it does not rule out special cases where some of its dimensions do not depend
on U . Let θ be an arbitrary parameter in Θ. We can partition function r(·, · ; θ) as

r(u, z; θ) =

(
r1(z; θ)

r2(u, z; θ)

)
(13)

where function r1 does not depend on the latent variables. Let dim(r1) and dim(r2) be
the dimension of r1 and r2 respectively. If every dimension of r(·, · ; θ) depends on U , then
dim(r1) = 0. If none of the dimensions of r(·, · ; θ) depend on U , then dim(r2) = 0. In most
cases considered in this paper, dim(r1) = 0, but there does exist some interesting cases where
dim(r1) > 0, one of which will be discussed later. Let S2 be the unit sphere in Rdim(r2),
i.e. S2 :=

{
λ ∈ Rdim(r2) : ‖λ‖ = 1

}
. Then, the testable restriction (9) is equivalent to the

following condition:

EF [r1(Z; θ)] = 0 and inf
λ∈S2

EFγ2(λ, Z; θ) ≥ 0, (14)

where γ2(λ, z; θ) := supu∈Γ(z;θ) λ
′r2(u, z; θ). Condition (14) is similar to (9) except that the

condition on r1 is simplified into moment equalities. When dim(r1) = 0, (9) and (14) are
identical. The following lemma plays a key role in my analysis and it is interesting in its own
right.
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Lemma 1. Suppose Assumption 1 holds. Let F be an arbitrary element in F and let θ be
an arbitrary parameter in Θ. Partition r(u, z; θ) = (r1(z; θ), r2(u, z; θ)).

(i) if EF [r1(Z; θ)] = 0 and infλ∈S2 EFγ2(λ, Z; θ) > 0, then θ ∈ ΘI(F ). (Note that the
infλ∈S2 EFγ2(λ, Z; θ) > 0 includes the case that infλ∈S2 EFγ2(λ, Z; θ) = +∞.)

(ii) if θ ∈ Θ′I(F )\ΘI(F ), then

EF [r1(Z; θ)] = 0 and inf
λ∈S2

EFγ2(λ, Z; θ) = 0,

or equivalently, infλ∈S EFγ(λ, Z; θ) = 0.

Lemma 1 provide a sufficient condition for θ ∈ ΘI(F ) without imposing assumptions as
in Assumption 2. It also implies that ΘI and Θ′I can only differ in θs at which the testable
restriction (9) is binding, i.e. infλ∈S Eγ(λ, Z; θ) = 0. This result not only helps us to visualize
the difference between ΘI and Θ′I , but also implies the following theorem.

Theorem 3. Suppose Assumption 1 holds and F is a convex set. Let θ be an arbitrary
parameter in Θ and partition r(u, z; θ) = (r1(z; θ), r2(u, z; θ)). If there exists some F ∗ ∈ F
such that

EF ∗ [r1(Z; θ)] = 0 and inf
λ∈S2

EF ∗γ2(λ, Z; θ) > 0, (15)

then it is impossible to distinguish θ ∈ ΘI from θ ∈ Θ′I in finite samples. Note that the
infλ∈S2 EF ∗γ2(λ, Z; θ) > 0 in (15) includes the case that infλ∈S2 EF ∗γ2(λ, Z; θ) = +∞.

To see the intuition of this result, consider the simple case where dim(r1) = 0. In this
case, (15) is the same as

inf
λ∈S

EF ∗γ(λ, Z; θ) > 0. (16)

For any distribution F † in F ′θ, and any k ≥ 1, define Fk = (1 − 1
k )F † + 1

kF
∗. Because

infλ∈S EF †γ(λ, Z; θ) ≥ 0, and because infλ∈S EFγ(λ, Z; θ) is concave function of F , it must
be true that infλ∈S EFkγ(λ, Z; θ) > 0 for any k. Lemma 1 then implies Fk ∈ Fθ for any k,
so that any test φn must satisfy EFkφn ≤ supF∈Fθ EFφn for all k. Let k → ∞, we conclude
that EF †φn ≤ supF∈Fθ EFφn. Since F † is an arbitrary element in F ′θ, this implies that any
test cannot distinguish θ ∈ ΘI(F ) and θ ∈ Θ′I(F ) in finite samples.

To apply Theorem 3, one only needs to find one F ∗ ∈ F to satisfy (15) and such F ∗

need not be the true distribution which generates the data. In practice, the simplest way to
verify (15) is to construct or simulate a data generating process for (U,Z) in which θ is the
true parameter and verify whether the resulting distribution for Z satisfies (15). In general
models, one needs to check (15) for each θ ∈ Θ in order to ensure indistinguishability for
each θ ∈ Θ. This is the best result one can possibly get without imposing more structure
on how (Γ, r) depends on θ. In practice, (Γ, r) usually has more structure. For example, r1

and γ2 may depend on θ and Z only through some index W (Z; θ). This structure can be
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utilized to simplify computation greatly. To illustrate how Theorem 3 can be operationalized
in practice, let me revisit Example 1 and 2.

Example 1 (continued). In Example 1, dim(r1) = 0 so that (15) can be simplified to (16).
Recall Z = (Y,X) is the observables. For any θ = (β, α) and any λ ∈ S, the γ(λ, Z; θ), by
its definition, is the result of the following optimization problem:

γ(λ, Z; θ) = sup
u
λ11(Y = 1)u+ λ21(Y = 0)u

s.t. u ∈

[−X ′β + α,+∞) if Y = 1

(−∞,−X ′β + α] if Y = 0

Therefore, γ(λ, Z; θ) depends on Z and θ only through X ′β − α and Y . For any θ with
β 6= 0, consider a data generating process (DGP) Hθ for (U,Z) as follows: U ≡ 0, X ′β−α ∼
N(0, 1) and Y = 1(X ′β − α + U ≥ 0). This DGP satisfies all model restrictions for θ. Let
Fθ be the marginal distribution of Hθ for Z = (Y,X). In addition, by construction, the
resulting distribution G of (X ′β − α, Y ) is the same for all θ with β 6= 0. Let W = X ′β − α
and, with a slight abuse of the notation, write γ(λ, Z; θ) = γ(λ,W, Y ). Then, for all λ ∈
S, EFθγ(λ, Z; θ) = EGγ(λ,W, Y ). Numerical simulation shows that infλ∈S EFθγ(λ, Z; θ) =

infλ∈S EGγ(λ,W, Y ) ≈ 0.399 > 0. Therefore, Theorem 3 implies that for any θ with β 6= 0,
one cannot distinguish θ ∈ Θ from θ ∈ Θ′ in finite samples. �

Example 2 (continued). In Example 2, dim(r1) = 0 so that we only need to check (16).
Recall that Y ∗ = X ′θ+ ε but we observe Y = max(Y ∗, C). The Z = (Y,C,W,X) collects all
the observables and U = (Y ∗, ε) is the latent variables. For any θ ∈ Θ and any λ ∈ S, the
γ(λ, Z; θ) in this example is equal to

γ(λ, Z; θ) =

λ′W (Y −X ′θ) if Y > C or λ′W ≥ 0

+∞ if otherwise

For any θ ∈ Θ, one can always construct a data generating process (DGP) H for (U,Z)

such that (i) Y ∗ = X ′θ + ε, Y = max(Y ∗, C) and EHWε = 0, (ii) PH(Y ∗ ≤ C) > 0 and
PH(Y ∗ = C|Y ∗ ≤ C) = 0, and (iii) supp(W |Y ∗ ≤ C) is of dimension dim(W ), i.e. it cannot
be included within a hyperplane in Rdim(W ). Let F be the marginal distribution of H for Z.
Then, for any λ ∈ S, one can show that

EFγ(λ, Z; θ) =

EH1(Y ∗ ≤ C)λ′W (C − Y ∗) if PH(λ′W ≥ 0|Y ∗ ≤ C) = 1

+∞ if otherwise

Because supp(W |Y ∗ ≤ C) is of dimension dim(W ), we know PH(λ′W = 0|Y ∗ ≤ C) < 1 for
any λ ∈ S. Because PH(Y ∗ = C) = 0, this implies that EH1(Y ∗ ≤ C)λ′W (C − Y ∗) > 0 for
any λ satisfying PF (λ′W ≥ 0|Y = C) = 1. Therefore, EFγ(λ, Z; θ) > 0 for any λ ∈ S.
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The restrictions (i)-(iii) in the above paragraph are very weak conditions. As long as the
F that the researcher assumes is compatible with these restrictions on the DGP, Theorem 3
implies that, for any θ ∈ Θ one cannot distinguish θ ∈ Θ from θ ∈ Θ′ in finite samples. �

4.3 Irreducibility

Because (15) is only a sufficient condition for the indistinguishability between θ ∈ ΘI and
θ ∈ Θ′I , one would like to know how restrictive it is. Moreover, because (15) is a purely
technical condition, one would like to know the interpretation and what to do when this
condition fails to hold. In the rest of this section, I am going to explore the answer to these
questions, which leads to a general principle that all restrictions on the support of the latent
variables should be explicitly stated in Γ(θ) and the support restrictions should be treated
differently from the moment restrictions. To motivate the analysis, let me revisit Example 4.

Example 4 (continued). I have already shown that ΘI and Θ′I are very different in Example
4. In the following, I point out two more observations on this example. First of all, given the
γ(λ, Z; θ) solved in (10), one can show that infλ∈S EFγ(λ, Z; θ) = 0 for any θ ∈ Θ and any
F ∈ F . Since dim(r1) = 0 in this example, it implies that inequality (15) fails for all θ ∈ Θ

and for all F ∈ F . This observation confirms the result in Theorem 3.
Secondly, recall that the moment restriction in this example is

E[1(Z1 ≤ U ≤ Z2)− 1] = 0,

E[U − θ] = 0.

Note that the first moment restriction can be reduced to the support restriction, P(Z1 ≤ U ≤
Z2) = 1. In other words, I can define a reduced model with moment restriction E[U − θ] = 0

and support restriction P(Z1 ≤ U ≤ Z2) = 1. This reduced model, denoted as (Γ̃, r̃), is
equivalent to the original model (Γ, r) in the sense that ΘI(F ; Γ, r) = ΘI(F ; Γ̃, r̃) for all
F ∈ F .

It turns out that these two observations are connected. As I will show later in a general
setting, the reducibility noted in the second observation is the exact reason why (15) fails for
all F ∈ F . �

In Example 4, after some of the moment restrictions are reduced to a support restriction,
the reduced model is equivalent to the original model. Such reducibility is going to play an
essential role in the following analysis. To state the general result, I am going to define such
reducibility formally in the following.

Definition 4. Let (Γ, r) be an arbitrary model and let θ be an arbitrary element in Θ. Par-
tition r(u, z; θ) = (r1(z; θ), r2(u, z; θ)). We say model (Γ̃, r̃) is a reduced model of (Γ, r) at θ if
dim(r2) > 0 and there exists dim(r2) number of linearly independent vectors λ1, ..., λdim(r2) ∈
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Rdim(r2) such that

Γ̃(θ) =
{

(u, z) ∈ Γ(θ) : λ′1r2(u, z; θ) = γ2(λ1, z; θ)
}

where γ2(λ1, z; θ) := supu∈Γ(z;θ) λ
′
1r2(u, z; θ), and

r̃(u, z; θ) =



r1(z; θ)

γ2(λ1, z; θ)

λ′2r2(u, z; θ)

λ′3r2(u, z; θ)
...

λ′dim(r2)r2(u, z; θ)


.

When model (Γ, r) reduces to (Γ̃, r̃), both the support and moment restrictions are mod-
ified. The reduced model includes an extra support restriction that the value of λ′1r2(u, z; θ)

should equal γ2(λ1, z; θ) almost surely, and one of its moment restriction (after some possible
rotation) is reduced to a condition which only involves Z and θ but not U . As a result,
if we partition r̃(u, z; θ) = (r̃1(z; θ), r̃2(u, z; θ)), dim(r̃1) > dim(r1). One can show that
ΘI(F ; Γ̃, r̃) ⊆ ΘI(F ; Γ, r), but the reverse inclusion is not true in general. In fact, it is possi-
ble that ΘI(F ; Γ̃, r̃) = ∅ but ΘI(F ; Γ, r) 6= ∅. However, in some special cases as in Example
4, the original and the reduced model could be equivalent in the sense that they always have
the same identified set. When there is such equivalence, I say the model is reducible.

Definition 5. Model (Γ, r) is reducible at θ if there exist some reduced model (Γ̃, r̃) at θ such
that, for any F ∈ F , θ ∈ ΘI(F ; Γ, r) if and only if θ ∈ ΘI(F ; Γ̃, r̃). Model (Γ, r) is reducible
if it is reducible at some θ ∈ Θ. Reversely, the model is irreducible at θ if it is not reducible
at θ and it is irreducible if it is not reducible.

By definition, if model (Γ, r) is reducible at θ, then some of its moment restrictions
(possibly after some rotation) evaluated at θ can be equivalently transformed and separated
into a support restriction and a moment restriction which only involves Z. In other words,
a model is reducible if and only if some restriction on the support of the latent variables is
implicitly stated in its moment restrictions. Reversely, a model is irreducible if and only if all
of its support restrictions have been explicitly specified and none of the moment restrictions
can be further reduced. When a reducible model is transformed into one of its equivalent
reduced models, it will not change its identified set, but it could shrink the moment closure
of the identified set. In fact, the following theorem shows that, if a model is, or has been
transformed to, an irreducible one, the difference between the identified set and its moment
closure cannot be distinguished in finite samples.

Theorem 4. Suppose Assumption 1 hold for model (Γ, r) and F is a convex set. The
following two results hold for any θ ∈ Θ,
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(i) if model (Γ, r) is irreducible at θ, then it is impossible to distinguish θ ∈ ΘI from θ ∈ Θ′I
in finite samples.

(ii) if (15) fails to hold for all F ∈ F , then one of the following statements must be true:

(a) F ′θ is empty or, equivalently, θ /∈ Θ′I(F ) for all F ∈ F ,
(b) model (Γ, r) is reducible.

Theorem 4 shows that ΘI and Θ′I are indistinguishable in finite samples if the model is
irreducible or, to put differently, if all the support restrictions have been explicitly stated and
none of the moment restrictions implicitly restrict the support of the latent variable. Note
that whether or not a model is reducible is not an intrinsic property of the model. Instead,
it depends on the way in which the model is written down. If model (Γ, r) is reducible at θ,
then one could always reformulate it into an equivalent reduced model (Γ̃, r̃). If the resulted
(Γ̃, r̃) is still reducible, then one can reduce (Γ̃, r̃) even further. After at most dim(r2) rounds
of reduction, any model can be rewritten as an equivalent irreducible model. Therefore,
Theorem 4 essentially implies that Θ′I of any model in the framework of (1), after proper
reformulation and reduction, is indistinguishable from ΘI in finite samples. Along with the
result in Theorem 1, this result establishes the sharp identification results for all models.

Theorem 4 also enumerates all the cases in which the inequality (15) could fail to hold
at θ for all F ∈ F . In case (a), because F ′θ = ∅ also implies that Fθ = ∅, both θ ∈ ΘI(F )

and θ ∈ Θ′I(F ) will always be rejected in this trivial case. In fact, if F ′θ is empty, one should
not include this θ in the parameter space in the first place, because this θ can never be the
true parameter. One can detect this case by trying to construct a DGP with θ being the
true parameter. Case (a) cannot happen if such construction is possible. If one can rule
out case (a), then (15) holds for some F ∈ F if and only if model (Γ, r) is irreducible at θ.
This provides a way to verify the irreducibility using numerical simulations instead of analysis
skills.

5 Counterfactual Analysis

In this section, I show how the identification approach discussed in the previous sections can
be used to conduct counterfactual analysis. In the following, I call the parameters of interest in
the counterfactual analysis counterfactual parameters, and call the other parameters structural
parameters. Before discussing the general results, let me illustrate the basic idea with the
running example.

Example 1 (continued). Recall that, the support restriction in Example 1 is, P[(Zi, Ui) ∈
Γ(θ)] = 1 where

Γ(θ) = {(zi, ui) : (−1)yi [x′iβ − α+ ui] ≤ 0}, (5) revisited

where yi is agent i’s choice, xi stands for the covariates, ui is the expectation error. Here, ui
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is the only unobserved variables, zi = (yi, xi) stands for the observables, and θ := (α, β) is
the parameter.

Let us now consider a counterfactual setting in which parameter α changes to a hypothet-
ical value α̃, for example, because of a hypothetical change to the fixed cost of agent’s choice.
α̃ could be a fixed value or a value related to α such as α̃ = 1

2α or α̃ = α − 1. Let Ỹi be
agent i’s choice in this counterfactual. Assume E[Ui|Ỹi] = 0 almost surely. Suppose that we
are interested in the counterfactual choice probability p̃ defined as p̃ = P(Ỹi = 1). Given the
fact that agent i’s counterfactual choice Ỹi is not observed, how to find the identified set for
the counterfactual parameter p̃ ?

It turns out that even if Ỹi is not observed, it must satisfy the following restriction almost
surely

Ỹi ∈


{1} if X ′iβ − α̃+ Ui > 0,

{0} if X ′iβ − α̃+ Ui < 0,

{0, 1} if X ′iβ − α̃+ Ui = 0.

In other words, if I let ũi := (ui, ỹi) be the collection of all unobserved variables including the
counterfactual choice, then I can write a new support restriction which restricts the latent
variable Ui as well as Ỹi as follows:

P[(Ũi, Zi) ∈ Γ̃(θ)] = 1 where Γ̃(θ) = {(ũi, zi) : (−1)yi [x′iβ−α+ui] ≤ 0, (−1)ỹi [x′iβ−α̃+ui] ≤ 0}.

Next, let us find out the moment restrictions which involves Ỹi. Analogous to E[Ui|Yi] = 0,
I assume E[Ui|Ỹi] = 0, which implies that E[1(Ỹi = 1)Ui] = 0 and E[1(Ỹi = 0)Ui] = 0.
In addition, we can treat p̃ as an extra model parameter and view p̃ = E[1(Ỹ = 1)] as an
additional moment restrictions. Append these restrictions to the original moment restrictions,
and we get the following updated moment restrictions:

E[r̃(Ũi, Zi; θ̃)] = 0, where r̃(Ũi, Zi; θ̃) =



1(Yi = 1)Ui

1(Yi = 0)Ui

1(Ỹi = 1)Ui

1(Ỹi = 0)Ui

1(Ỹi = 1)− p̃


and θ̃ := (α, β, p̃) is the collection of all parameters including the counterfactual parameter p̃.

We now have a new model (Γ̃, r̃) which incorporates all the restrictions on the counter-
factual choice Ỹi. All the identification results discussed in the preceding sections can then
be applied to (Γ̃, r̃), in the same way as it applies to (Γ, r). Then, Theorem 1 implies that
Condition (9), with (Γ, r) replaced by (Γ̃, r̃), characterizes the Θ′I for θ̃. When Theorem 2 or
3 apply, it also characterizes the ΘI for θ̃.

To illustrate the connection between the Condition (9) for (Γ̃, r̃) and that for (Γ, r) more
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vividly, note that, when Xi is continuously distributed and α̃ < α,1 the Condition (9) for
(Γ̃, r̃) in this example can be simplified as the following condition, as shown in Appendix A.1:

E[1(Yi = 1)(X ′iβ − α)] ≥ 0,

E[1(Yi = 0)(X ′iβ − α)] ≤ 0,

E[1(Yi = 1)] ≤ p̃,

E[1(Yi = 1)] + E[1(Yi = 0, X ′iβ − α̃ ≥ µ)] ≥ p̃.

(17)

where

µ =

−∞ if E[1(Yi = 0)(X ′β − α̃)] ≥ 0,

µ that solves E[1(Yi = 0, X ′iβ − α̃ ≥ µ)(X ′β − α̃)] = 0 if E[1(Yi = 0)(X ′β − α̃)] < 0.

Note that the first two conditions (17) are used to characterize the parameters in the
original model. Because the counterfactual analysis does not impose extra identification
restrictions for (α, β), it is not surprising that the first two conditions (17) coincide with
the Condition (9) for the original model shown in (11). The last two conditions in (17)
are the new conditions induced from the restrictions that are imposed to the counterfactual
choice Ỹi. They provide lower and upper bounds for the counterfactual parameter p̃. When
E[1(Yi = 0)(X ′β − α̃)] ≥ 0, the upper bound for p̃ is 1. When E[1(Yi = 0)(X ′β − α̃)] < 0,
the upper bound for p̃ is nontrivial.

The inference is not the main focus here, but I want to point out that (17) can be rewritten
equivalently as the following group of moment inequalities:

E[1(Yi = 1)(X ′iβ − α)] ≥ 0,

E[1(Yi = 0)(X ′iβ − α)] ≤ 0,

E[1(Yi = 1)] ≤ p̃,

E[1(Yi = 1)] + E[1(Yi = 0) max(1 + µ(X ′β − α̃), 0)] ≥ p̃, ∀µ ≥ 0

(18)

where µ is a scalar and ranges over all non-negative values. With (18) in hand, one can
then construct a confidence region for the structural parameter (α, β) and the counterfactual
parameter p̃ jointly. Or, if one only cares about the counterfactual parameter p̃, one can
conduct subvector inference directly on p̃ and treat (α, β) as nuisance parameters. �

In general, counterfactual analysis can be conducted in the following way. Let Ỹi denote
the counterfactual model prediction. Suppose the counterfactual parameter p̃ satisfies the
following moment conditions for some known function g,

E[g(Ỹi, Ui, Zi; θ, p̃)] = 0. (19)

This moment condition usually comes from the definition of p̃ and some extra restrictions on

1One can derive similar conditions in the case of α̃ > α.
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Ỹi and Ui as in the above example. In general cases, p̃ could be a vector, and function g could
also be a vector function.

Given the unobservable and observed characteristics (ui, zi), define C(ui, zi; θ) to be the
set of all counterfactual behaviors which are consistent with the model assumptions. Then,
the model restrictions on the counterfactual behaviors can be written as

P[Ỹi ∈ C(Ui, Zi; θ)] = 1.

Define Ũi := (Ui, Ỹi) to be the collection of all unobservables including the counterfactual
model prediction. Define a new support restriction P[(Ũi, Zi) ∈ Γ̃(θ)] = 1 based on the
original support restrictions as well as the restrictions on the counterfactuals, i.e.

Γ̃(θ) := {(ũi, zi) : (ui, zi) ∈ Γ(θ) and ỹi ∈ C(ui, zi; θ)}. (20)

Finally, let θ̃ := (θ, p̃) be the collection of both structural and counterfactual parameters.
Then, construct the new moment restriction E[r̃(Ũi, Zi; θ̃)] = 0 by combining the original
moment restriction E[r(Ui, Zi; θ)] = 0 with (19) and defining

r̃(ũi, zi; θ̃) =

(
g(ỹi, ui, zi; θ̃)

r(ui, zi; θ)

)
. (21)

One can then view θ̃ as a model primitive and apply the method in Section 3 to (Γ̃, r̃).
Depending on the goal of the empirical analysis, Condition (9) can be used to find the sharp
identified set for θ and p̃ jointly or the projected identified set only for p̃.

In contrast to the above procedure, the traditional simulation-based counterfactual anal-
ysis is usually conducted as follows: One first sets up an empirical model in which the dis-
tribution of all random variables can be point identified. Then, the structural parameters
are estimated. Finally, one simulates the unobservables with the estimated distribution and
explicitly solves for the exact value or the bound of the model predictions with the simu-
lated sample to recover the counterfactual parameters. Such an approach only works if the
distribution of unobservables is point identified, but the point identification of the distribu-
tion often hinges on stringent restrictions like parametric assumptions on the distribution of
unobservables, or large support assumptions for the covariates.

The approach developed in this section works under very mild conditions. Instead of
simulating the unobservables, I directly utilize the restrictions on the unobservables in the
original data. Heuristically, if it is possible to observe Ui in the data, the counterfactual
analysis would be straightforward and there would be no need to simulate the unobservables.
In practice, it is impossible to observe or calculate Ui in a possibly partially identified model,
but the observed variables and the model do have restrictions on Ui, which further restricts
the possible values of the counterfactuals. By exploiting these restrictions, one can then derive
bounds on the counterfactual parameters. This is the basic intuition behind the construction
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of (Γ̃, r̃) and also the major distinction between my approach and the traditional simulation-
based approach.

6 Inference Method for Discrete Models

In this section, I discuss efficient ways to conduct inference when model (Γ, r) is discrete.
The general form of the identification condition in (9) involves an infinite number of moment
inequalities, whose inference problem is typically computationally challenging. However, as
I will show later, when the model is discrete there exist ways to alleviate the computational
complexity.

Definition 6. Model (Γ, r) is said to be discrete in the support if the set {r(u, z; θ) : (u, z) ∈
Γ(θ)} is finite for any θ ∈ Θ.

A model (Γ, r) can be discrete if function r(·, ·; θ) is discrete or if the support of (Z,U)

is discrete. When a model (Γ, r) is discrete, Theorem 2 implies that ΘI = Θ′I . In the
remaining of this section, I am going to show that, when (Γ, r) is discrete, testing H0 : θ ∈ ΘI

is equivalent to the inference for a linear system with known coefficients studied in Fang,
Santos, Shaikh and Torgovitsky (2020).

For each z ∈ Z, recall that Υ(z; θ) := {r(u, z; θ) : (u, z) ∈ Γ(θ)} is the set of all possible
values of r at given z and θ. Define Υ(θ) := {Υ(z; θ) : z ∈ Z}. For a discrete model, both
Υ(z; θ) and Υ(θ) are finite sets. We can then enumerate Υ(θ) as Υ(θ) = {Υ1(θ), ...,ΥK(θ)},
where K can also depend on θ though I leave such dependence implicit to avoid heavy
notations. Then, for any z ∈ Z with Υ(z; θ) = Υk(θ), we know that

γ(λ, z; θ) = max{λ′r : r ∈ Υk(θ)}.

Therefore, for any F ∈ F , infλ∈S EFγ(λ, Z; θ) ≥ 0 is equivalent to

inf
λ∈Rdim(r)

K∑
k=1

pF,k(θ) max{λ′r : r ∈ Υk(θ)} ≥ 0,

where pF,k(θ) = PF (Υ(Z; θ) = Υk). After introducing a vector of auxiliary variables t ∈ RK

and letting tk = max{λ′r : r ∈ Υk(θ)}, I can rewrite the identification condition as the
following inequality:

0 ≤ inf
λ∈Rdim(r),t∈RK

k∑
k=1

pF,k(θ)tk (22)

s.t. tk ≥ λ′r, ∀k = 1, ...,K, ∀r ∈ Υk(θ).

Note that the right-hand side in the inequality (22) is a linear programming problem. To
make the notation more concise, define pF (θ) = (pF,1(θ), ..., pF,K(θ))′. Enumerate Υk(θ) =
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{rk,1(θ), ..., rk,mk(θ)} with mk being the number of elements in Υk(θ). Here, I leave the
dependence of mk on θ implicit to simplify the notations. Let M =

∑K
k=1mk. Define a

(dim(r) +K)×M matrix A(θ) as follows:

A(θ) =



−r1,1(θ) · · · −r1,m1(θ) −r2,1(θ) · · · −r2,m2(θ) · · · −rK,1(θ) · · · −rK,mK (θ)

1 · · · 1

1 · · · 1
. . .

1 · · · 1


.

Then, inequality (22) can be written in the matrix notation:

0 ≤ inf
λ∈Rdim(r),t∈RK

pF (θ)′t (23)

s.t. A(θ)′

(
λ

t

)
≥ 0.

After invoking the Farkas’ lemma, inequality (23) holds if and only if the linear system in the
following proposition has a nonnegative solution.

Proposition 1. Suppose (Γ, r) is discrete. Then, θ ∈ ΘI(F ) if and only if there exists some
ν ∈ RM such that ν ≥ 0 and

A(θ)ν =

(
0dim(r)

pF (θ)

)
where 0dim(r) is a zero vector of dimension dim(r) and pF (θ) = (PF (Υ(Z; θ) = Υk) : k =

1, ...,K)′.

Note that A(θ) is a known and nonstochastic matrix function of θ. In finite samples.
one only need to estimate vector pF (θ). Therefore, the inferece problem for θ ∈ ΘI in a
discrete model, after being transformed as in Proposition 1, fits in the framework of Fang,
Santos, Shaikh and Torgovitsky (2020). One can then utilize the inference procedure therein
to conduct the test for θ. Since their inference procedures can be implemented as a series of
linear programming problems, the transformed hypothesis as in Proposition 1 is suitable for
large scale problems.

For small scale problems, one can also enumerate all the vertices of the following polyhe-
dron {(

λ

t

)
: A(θ)′

(
λ

t

)
≥ 0

}
using efficient software packages in computational geometry such as the package lrs by David
Avis among others. Suppose the above polyhedron has N vertices which are enumerated
as (λ1(θ), t1(θ)), ..., (λN (θ), tN (θ)). Here, N can also depend on the value of θ, though I
leave this dependence implicit to simplify notations. For any linear programming problem
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whose optimal value is finite, its optimal value can always be achieved at some vertex of
the its feasible region. Therefore, inequality (23) holds if and only if the following moment
inequalities holds:

∀i = 1, ..., N, p′F (θ)ti(θ) ≥ 0, (24)

which further implies that θ ∈ ΘI(F ) if and only if (24) holds for θ.
Again, note that ti(θ) is nonstochastic and known given the value of θ. Therefore, one

can use inference for moment inequalities to test inequality (24). See Andrews and Soares
(2010) and Romano, Shaikh and Wolf (2014) among many others.

7 Conclusion

The sharp identification analysis in the partial identification literature typically focuses on
methods and conditions under which the set of parameters satisfying the testable restrictions
is equal to the identified set exactly. What makes the analysis in this paper different is that I
switch to a slightly different analysis goal and study when these two sets are indistinguishable
in finite samples. This leads to less restrictive regularity conditions and a wider class of
applicable models. I applied this idea to models in framework (1) in this paper, but the same
idea could be carried over to identification analysis for other models in the future as well.

Another distinctive feature of this paper is the unified treatment for both structural and
counterfactual parameters. The reason why this is possible even for a partially identified
incomplete model is that I allow the moment restrictions to depend on the latent variables.
Indeed, this unified treatment is always possible whenever the identification strategy is general
enough to incorporate the latent variables in the model restrictions. Hence, this idea can also
be applied to methods in Beresteanu, Molchanov and Molinari (2011), Chesher and Rosen
(2017) and Schennach (2014) among others.

This paper also illustrates the computation advantage of a discrete model. For a non-
discrete model not covered in Section 6, a natural extension is to think about discretizing it
or approximating it with another discrete models. It is possible to establish consistent results
that the difference between the identified set of the continuous model and the discretized
model would converge to zero as the approximation error goes to zero. However, what is
more challenging is to bound the difference between these two sets for a given value of the
approximation error instead of that in the limit. This approximation idea is also related to
the sensitivity analysis where the model in hand could be slightly misspecified. Exploring
these ideas would be an interesting topic for future work.
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Appendices

A Additional Results on Examples

A.1 Results related to Example 1

Simplification of Condition (9): Note that, for each λ ∈ S,

EFγ(λ, Z; θ) = E

[
1(Y = 1) sup

u∈[−X′β+α,+∞)
λ1u+ 1(Y = 0) sup

u∈(−∞,−X′β+α]
λ2u

]
.

Therefore, we only need to focus on λ ∈ S ′ := {λ ∈ S : λ1 ≤ 0, λ2 ≥ 0} at which
EFγ(λ, Z; θ) < +∞. For any λ ∈ S ′,

EFγ(λ, Z; θ) = λ1E1(Y = 1)(−X ′β + α) + λ2E1(Y = 0)(−X ′β + α)

Note that EFγ(λ, Z; θ) ≥ 0 for all λ ∈ S ′ if and only if

EF [1(Y = 1)(X ′β − α)] ≥ 0,

EF [1(Y = 0)(X ′β − α)] ≤ 0.

Therefore, Condition (9) holds if and only if the above moment inequality holds.

Simplification of Condition (9) in the counterfactual analysis: In the following,
I only study the case where α̃ < α. The analysis for α̃ > α is very similar. By definition, the
γ function for (Γ′, r′) is

γ(λ, Z; θ) = sup
u,Ỹ

λ11(Y = 1)u+ λ21(Y = 0)u+ λ31(Ỹ = 1)u+ λ41(Ỹ = 0)u+ λ5(1(Ỹ = 1)− p̃)

s.t. u ∈


[−X ′β + α,+∞) if Y = Ỹ = 1

[−X ′β + α̃,−X ′β + α] if Y = 0, Ỹ = 1

(−∞,−X ′β + α̃] if Y = Ỹ = 0

Therefore,

γ(λ, Z; θ) =



(λ1 + λ3)(−X ′β + α) + λ5(1− p̃) if Y = 1, λ1 + λ3 ≤ 0

max
{

(λ2 + λ3)(−X ′β + α̃) + λ5(1− p̃),

(λ2 + λ3)(−X ′β + α) + λ5(1− p̃), if Y = 0, λ2 + λ4 ≥ 0

(λ2 + λ4)(−X ′β + α̃)− λ5p̃
}

+∞ if otherwise
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As a result, we only need to focus on λ ∈ S ′′ := {λ ∈ S : λ1 + λ3 ≤ 0, λ2 + λ4 ≥ 0}. In
the following, I am going to show that Condition (9) is equivalent to (17) which are further
equivalent to (18). I divide the proof into three parts.
Part 1: I claim that Eγ(λ, Z; θ) ≥ 0 for any λ ∈ S ′′ with λ5 = 0 if and only if

E1(Y = 1)(X ′β − α) ≥ 0,

E1(Y = 0)(X ′β − α) ≤ 0.
(25)

To see why it is so, note that, for any λ ∈ S ′′ with λ5 = 0,Eγ(λ, Z; θ) ≥ 0 is equivalent to

E1(Y = 1)(λ1 + λ3)(−X ′β + α) +

E1(Y = 0) max
{

(λ2 + λ3)(−X ′β + α̃), (λ2 + λ3)(−X ′β + α), (λ2 + λ4)(−X ′β + α̃)
}
≥ 0.

Therefore, Eγ(λ, Z; θ) ≥ 0 for any λ ∈ S ′′ with λ5 = 0 if and only if E1(Y = 1)(X ′β−α) ≥ 0

and the following inequality holds for any λ ∈ S ′′ with λ5 = 0,

E1(Y = 0) max
{

(λ2 + λ3)(−X ′β + α̃), (λ2 + λ3)(−X ′β + α), (λ2 + λ4)(−X ′β + α̃)
}
≥ 0.

(26)
Moreover, (26) holds for all λ ∈ S ′′ with λ5 = 0 if and only if E[1(Y = 0)(X ′β−α) ≤ 0. This
is because (26) implies E[1(Y = 0)(X ′β − α) ≤ 0 when λ2 + λ3 = λ2 + λ4 = 1, and because
E[1(Y = 0)(X ′β−α) ≤ 0 implies (26) for all λ2 +λ3 ≥ 0, and because (26) always hold when
λ2 + λ3 ≤ 0.

Part 2: I claim that, when (25) hold, Eγ(λ, Z; θ) ≥ 0 for all λ ∈ S ′′ with λ5 < 0 if and only if
p̃ ≥ E1(Y = 1). To see this, let a = −(λ1 +λ3)/λ5, b = −(λ2 +λ3)/λ5 and c = −(λ2 +λ4)/λ5.
Then, Eγ(λ, Z; θ) ≥ 0 for all λ ∈ S ′′ with λ5 < 0 is equivalent to the following condition for
all a ≤ 0, b ∈ R and c ≥ 0,

aE1(Y = 1)[(−X ′β + α)]

+ E1(Y = 0) max
{
b(−X ′β + α̃), b(−X ′β + α), c(−X ′β + α̃) + 1

}
≥ 1− p̃ (27)

Since (25) hold, we know that (27) holds for all a ≤ 0, b ∈ R and c ≥ 0 is equivalent to that
the following condition holds for all b ∈ R and c ≥ 0,

E1(Y = 0) max
{
b(−X ′β + α̃), b(−X ′β + α), c(−X ′β + α̃) + 1

}
≥ 1− p̃. (28)

When b = c = 0, (28) implies that p̃ ≥ E1(Y = 1). Moreover, for any b ∈ R and c ≥ 0,

E1(Y = 0) max
{
b(−X ′β + α̃), b(−X ′β + α), c(−X ′β + α̃) + 1

}
≥ cE1(Y = 0)(−X ′β + α̃) + E1(Y = 1)

≥ cE1(Y = 0)(−X ′β + α) + E1(Y = 1)

≥ E1(Y = 1),
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where the second last inequality follows from α̃ < α and the last inequality follows from (25).
Part 3: I claim that, when (25) hold, Eγ(λ, Z; θ) ≥ 0 for all λ ∈ S ′′ with λ5 > 0 if and only
if the last inequality in (17) hold. To see this, let a = (λ1 + λ3)/λ5, b = (λ2 + λ3)/λ5 and
c = (λ2 + λ4)/λ5. Then, Eγ(λ, Z; θ) ≥ 0 for all λ ∈ S ′′ with λ5 > 0 is equivalent to the
following condition for all a ≤ 0, b ∈ R and c ≥ 0,

aE1(Y = 1)[(−X ′β + α)] + E1(Y = 1)

+ E1(Y = 0) max
{
b(−X ′β + α̃) + 1, b(−X ′β + α) + 1, c(−X ′β + α̃)

}
≥ p̃ (29)

Since (25) hold, that (29) holds for all a ≤ 0, b ∈ R and c ≥ 0 is equivalent to that the
following condition hold for all b ∈ R and c ≥ 0,

E1(Y = 1) + E1(Y = 0) max
{
b(−X ′β + α̃) + 1, b(−X ′β + α) + 1, c(−X ′β + α̃)

}
≥ p̃ (30)

When b ≥ 0, (30) is equivalent to

E1(Y = 1) + E1(Y = 0) max
{
b(−X ′β + α) + 1, c(−X ′β + α̃)

}
≥ p̃. (31)

Note that when b = c = 0, (31) implies 1 ≥ p̃. Reversely, for any b ≥ 0 and c ≥ 0,

E1(Y = 1) + E1(Y = 0) max
{
b(−X ′β + α) + 1, c(−X ′β + α̃)

}
≥ E[1(Y = 1)] + E[1(Y = 0)(b(−X ′β + α) + 1)]

≥ E[1(Y = 1)] + E[1(Y = 0)]

= 1

where the last inequality follows from (25). Hence, that (30) holds for all b ≥ 0 and c ≥ 0 is
equivalent to 1 ≥ p̃.

When b ≤ 0, (30) is equivalent to

E1(Y = 1) + E1(Y = 0) max
{
b(−X ′β + α̃) + 1, c(−X ′β + α̃)

}
≥ p̃.

Because α̃ < α and (25) hold, the above condition holds for all b ≤ 0 and c ≥ 0 if and only if
the following condition holds:

inf
ρ≥0

E[1(Y = 0) max
{
ρ(X ′β − α̃) + 1, 0)

}
≥ p̃− E[1(Y = 1)] (32)

Note that the left-hand side of (32) is a convex minimization problem. Its Karush–Kuhn–Tucker
(KKT) conditions for the optimal ρ∗ can be written as

ρ∗ ≤ 0, E1(Y = 0, ρ∗(X ′β − α̃) + 1 ≥ 0)(X ′β − α̃) ≥ 0

ρ∗E1(Y = 0, ρ∗(X ′β − α̃) + 1 ≥ 0)(X ′β − α̃) = 0
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If E1(Y = 0)(X ′β − α̃) ≥ 0, then ρ∗ = 0 satisfies the KKT conditions. If E1(Y = 0)(X ′β −
α̃) < 0, then ρ∗ > 0 and it solves

E1
(
Y = 0, (X ′β − α̃) ≥ − 1

ρ∗

)
(X ′β − α̃) = 0

which coincide with the last condition in (17).

A.2 additional example

Example 5 (binary choice model with both known and unknown errors to the agents).
Consider the same model as in Example 1 except that the agents now might know some
payoff shocks when making the decision. As before, let Yi ∈ {0, 1} be agent i’s choice. When
Yi = 1, the payoff πi of player i is

πi = X ′iβ − α+ εi,

where εi is the payoff shocks that are known to the agent i but unobservable to the researchers.
As in Example 1, assume agent i chooses optimally based on his subjective expectation,

Yi =

1 if Es[πi] > 0,

0 if Es[πi] < 0.
(33)

Assume the expectation is rational so that the expectation error νi = Es[πi] − πi satisfy
E[νi|Yi] = 0 almost surely. Assume also that εi has median zero, i.e. P(εi ≤ 0) = P(εi ≥ 0).

To fit this model into the framework, let Zi := (Yi, Xi), Ui := (εi, νi) and θ := (α, β).
Then, the support restriction is

P[(Ui, Zi) ∈ Γ(θ)] = 1, where Γ(θ) = {(ui, zi) : (−1)yi [x′iβ − α+ νi + εi] ≤ 0}. (34)

Moreover, moment restriction is:

Er(Ui, Zi; θ) = 0, where r(Ui, Zi; θ) =

 1(Yi = 1)νi

1(Yi = 0)νi

1(εi ≤ 0)− 1(εi ≥ 0)

 .

�

B Basic Concepts of Random Set Theory

This section collects some basic concepts and results of random sets and measurable functions
used in the paper. Throughout the paper, the random set is defined on a finite-dimensional
Euclidean space. I follow the notation in Molchanov (2005) whenever possible.
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Definition B.1 (Random Set). Let (Ω,S , P ) be a probability space. A correspondence
Y : Ω ⇒ Rd is said to be a random closed set if (i) Y (ω) is closed almost surely; (ii) for each
compact set K in Rd, {ω ∈ Ω : Y (ω) ∩K 6= ∅} ∈ S .

Fix a complete probability space (Ω,S , P ). Let L1(Ω;Rd) denote the set of all integrable
functions f : Ω 7→ Rd. The following introduces the expectation concept of random set theory.

Definition B.2 (integrable selections). If Y is a random closed set, then S1(Y ) denotes the
family of all integrable selections of Y . That is,

S1(Y ) := {f ∈ L1(Ω;Rd) : f(ω) ∈ Y (ω) almost surely}

Definition B.3 (integration of random set). Let Y be a random closed set. Its Aumann
integral EIY is defined as the set of all expectations of integrable selections,

EIY := {Ef : f ∈ S1(Y )}

Its selection expectation EY is defined as the closure of EIY ,

EY := cl{Ef : f ∈ S1(Y )}

Finally, the following introduces a boundedness concept on random sets.

Definition B.4 (integrable random set). A random closed set Y is called integrable if
S1(Y ) 6= ∅. A random closed set Y is called integrably bounded if ‖Y ‖ := sup{‖t‖ : t ∈ Y }
has finite expectation, i.e. ‖Y ‖ ∈ L1(Ω;R).

The following lemma summarizes the results I used to prove the theorems in the paper.

Lemma B.1. Let Y be a random closed set, whose realization is a subset of Rd.

(i) S1(Y ) 6= ∅ if and only if inf{‖t‖ : t ∈ Y } is integrable.

(ii) If Y is integrably bounded, EIY is a compact set and EY = EIY .

(iii) If a function ζ : Rd 7→ R ∪ {±∞} is upper or lower semicontinuous , then inf{ζ(t) : t ∈
Y } is a random variable. Moreover, if S1(Y ) 6= ∅ and Eζ(f) is defined for all f ∈ S1(Y )

and Eζ(f) <∞ for at least one f ∈ S1(Y ), then

inf
f∈S1(Y )

Eζ(f) = E inf
t∈Y

ζ(t)

(iv) If S1(Y ) 6= ∅, then Eco(Y ) = coEY where co stands for the closure of the convex hull.

Proof. For results (i), (iii) and (iv), see Molchanov (2005), Theorem 1.7 (p.149), Theorem
1.10 (p. 150) and Theorem 1.17 (p. 154) respectively.

For result (ii), Theorem 1.24 on page 158 in Molchanov (2005) implies EIY is a closed
set. Moreover, since ‖v‖ ≤ E ‖Y ‖ , ∀v ∈ EIY , EIY is bounded. Since EIY ⊆ Rd, EIY is
compact.
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C Selection Theorem

This section collects some concepts and results on measurable selection which will be cited
later in the proof.

Definition C.1 (universally measurable set). Let S be a Polish space and let BS be its Borel
sigma algebra. A subset S′ of S is a universally measurable set if for any complete probability
space (S,F , F ) with BS ⊆ F , S′ ∈ F .

Definition C.2 (universally measurable function). Let S be a Polish space and let BS be its
Borel sigma algebra, and T be some topological space. A function f : S 7→ T is universally
measurable if for any Borel set B of T , {s ∈ S : f(s) ∈ B} is universally measurable.

By definition, if a function is uniformly measurable, then it’s also measurable in the
completion of any Borel probability space. Moreover, any Borel set in a Polish space is
universally measurable. Given D ⊆ S × T , define projS(D) := {s ∈ S : ∃t ∈ T, (s, t) ∈ D}
and Ds := {t ∈ T : (t, s) ∈ D}. The following lemma is a simplified version of Proposition
7.50(b) in Bertsekas and Shreve (1978).

Lemma C.1 (measurable selection). Let S and T be Polish spaces, let D ⊆ S×T be a Borel
set, and let f : D → R be a Borel measurable function. Define f∗ : projS(D)→ R∪{−∞} by

f∗(s) = inf
t∈Ds

f(s, t).

Suppose f∗(s) > −∞ for any s ∈ projS(D). Then, the set

I := {s ∈ projS(D) : ∃ts ∈ Ds, f(s, ts) = f∗(s)}

is universally measurable. And, for every ε > 0, there exists a universally measurable function
φ : projS(D) 7→ T such that (i) Gr(φ) ⊆ D; (ii) for all s ∈ projS(D), f(s, φ(s)) ≤ f∗(s) +

ε, ∀s ∈ S and, (iii) for all s ∈ I, f(s, φ(s)) = f∗(s).

Proof. Since

• every Borel set is an analytic set,

• every Polish space is a Borel space as defined in Definition 7.7 in Bertsekas and Shreve
(1978) (page 118),

• every Borel measurable function is lower semianalytic function as defined in Definition
7.21 in Bertsekas and Shreve (1978) (page 177),

the result follows from Proposition 7.50(b) on page 184 in Bertsekas and Shreve (1978).
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D Proof of Theorem 1, Theorem 2 and Lemma 1

The proof builds on the result of random sets and measurable selections listed in Appendix
B and C. To state the proof, I also need the following extra notation:

Notation For any F ∈ F , let Θ̃(F ) be the set of all θ which satisfies (9). For any set A in
an Euclidean space, I use intA to denote its interior , clA to denote its closure, coA to denote
its convex hull and coA to denote the closure of its convex hull. Given any topological space
X, let BX denote all Borel sets on X , and PX denote the set of all probability measures on
measurable space (X ,BX ). Recall that U and Z denote the space of U and Z respectively. For
any F ∈ F , let the probability space (Z,Z , F ) be the completion of (Z,BZ , F ). Moreover,
recall Γ(z; θ) := {u ∈ U : (u, z) ∈ Γ(θ)}. Define Υ(z; θ) as the image of Γ(z; θ) by r, i.e.

Υ(z; θ) := {r(u, z; θ) : u ∈ Γ(z; θ)}.

Then, (9) can be rewritten as

∀λ ∈ S, EF

[
sup

t∈Υ(Z;θ)
λ′t

]
≥ 0.

In the following, I first prove Lemma D.1 which establishes some useful properties for
Υ(z; θ) as a random set. Then, I prove Theorem 1 first, and then Theorem 2 and finally
Lemma 1.

D.1 Property of Υ(z; θ)

In the following, I use Assumption 1(i) and 1(ii) to denote the first and the second condition
in Assumption 1 respectively. Similarly, I use Assumption 2 (i) and Assumption 2 (ii) to
denote the first and the second condition in Assumption 2. The following lemma provides
some basic results needed for the proof of all theorems.

Lemma D.1. Let F be an arbitrary element in F .

(i) Suppose Assumption 1(i) holds. Then, for each θ ∈ Θ, clΥ(·; θ) is a random closed set
in probability space (Z,Z , F ).

(ii) Suppose Assumption 1 hold. Then, for each θ ∈ Θ, clΥ(·; θ) is an integrable random
closed set in probability space (Z,Z , F ).

(iii) Suppose Assumption 1(i) and Assumption 2(ii) hold. Then, for each θ ∈ Θ, random
closed set clΥ(·; θ) is integrably bounded in probability space (Z,Z , F ).

Proof of Lemma D.1. (i) I first show clΥ(·; θ) is a random closed set under Assumption 1(i).
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Let D = {t1, t2, ...} be a countable set dense in Rdim(r). For each ti ∈ D, consider the
following optimization problem ,

inf
u∈Γ(z;θ)

‖ti − r(u, z; θ)‖

Given that ‖ti − r(u, z; θ)‖ is a Borel measurable function of (u, z), that Γ(θ) is a Borel set,
and that Γ(z; θ) is nonempty almost surely, Lemma C.1 implies that, for any n ∈ N, there
exists a universally measurable function fi,n : Z 7→ U such that for any z ∈ Z, fi,n(z) ∈ Γ(z; θ)

and
‖ti − r(fi,n(z), z; θ)‖ ≤ 1

n
+ inf
u∈Γ(z;θ)

‖ti − r(u, z; θ)‖ .

See Definition C.2 for the definition of a universal measurable function. Since (Z,Z , F ) is
the completion of the Borel probability space (Z,BZ , F ), by the definition of universally
measurable functions, fi,n(z) is also Z -measurable.

Fix an arbitrary z. Since, by construction, fi,n(z) ∈ Γ(z; θ), we know cl{r
(
fi,n(z), z

)
:

i, n ∈ N} ⊆ clΥ(z; θ). On the other hand, for any t ∈ clΥ(z; θ) and any ε > 0, there must
exists some ti ∈ D such that ‖t− ti‖ ≤ ε/3, and there must exists some n ∈ N such that
‖ti − r(fi,n(z), z; θ)‖ ≤ 2ε/3. Hence, for any t ∈ clΥ(z; θ) and any ε > 0, there exists some
t̃ ∈ {r

(
fi,n(z), z

)
: i, n ∈ N} such that

∥∥t− t̃∥∥ ≤ ε. Hence, clΥ(z; θ) = cl{r
(
fi,n(z), z

)
: i, n ∈

N}. By Theorem 2.3 on page 26 of Molchanov (2005), clΥ(z; θ) is a random closed set in
(Z,Z , F ).

(ii) Suppose, in addition, Assumption 1(ii) holds. The fact that clΥ(z; θ) is a random
closed set implies z 7→ inf{‖t‖ : t ∈ clΥ(z; θ)} is measurable in (Z,Z ) (See result (iii) in
Lemma B.1). Moreover, note that

inf{‖t‖ : t ∈ Υ(z; θ)} = inf{‖t‖ : t ∈ clΥ(z; θ)}.

Assumption 1(ii) then implies z 7→ inf{‖t‖ : t ∈ clΥ(z; θ)} is an integrable function. By
Definition B.4 and Lemma B.1(i), clΥ(·; θ) is integrable.

(iii) Finally, given the first result in this lemma, Assumption 2(ii) directly implies clΥ(·; θ)
is integrably bounded by definition.

D.2 Proof of Theorem 1

Let me state the following two lemmas first, the proof of which will be presented after I prove
Theorem 1.

Lemma D.2. Suppose set A is a nonempty closed convex set in Rd. Then 0 ∈ A if and
only if

inf
λ∈Rd

sup{λ′t : t ∈ A} ≥ 0. (35)
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Note that (35) includes the case that infλ∈Rd sup{λ′t : t ∈ A} ≥ 0 which could happen when
A = Rd .

Lemma D.3. Suppose Assumption 1 hold. Then, for any F ∈ F , 0 ∈ coEF clΥ(Z; θ) implies
θ ∈ Θ′I(F ).

Proof of Theorem 1. Fix an arbitrary element F in F . In the following proof, I will abbreviate
EF as E, Θ′I(F ) as Θ′I , and Θ̃(F ) as Θ̃. Recall that EI stands for the Aumann integral.

First of all, I’m going to show Θ̃(F ) ⊆ Θ′I(F ). Lemma D.1 implies that clΥ(·; θ) is an
integrable random closed set in (Z,Z , F ). Suppose, for the purpose of contradiction, there
exists θ ∈ Θ̃ such that θ /∈ Θ′I . Then, by Lemma D.3, 0 /∈ coEclΥ(Z; θ). Lemma D.2 then
implies that the following inequality holds:

inf
λ∈Rdim(r)

sup{λ′t : t ∈ coEclΥ(Z; θ)} < 0

By Lemma B.1(iv), and the fact that coΥ(Z; θ) ⊆ coclΥ(Z; θ), and that the Aumann
integral EIcoΥ(Z; θ) ⊆ EcoΥ(Z; θ), we know

inf
λ∈Rdim(r)

sup{λ′t : t ∈ EIcoΥ(Z; θ)} < 0 (36)

Choose any λ̃ such that sup{λ̃′t : t ∈ EIcoΥ(Z; θ)} < 0. Note that

sup{λ̃′t : t ∈ EIcoΥ(Z; θ)} = − inf
f∈S1(coΥ(Z;θ))

E[−λ̃′f ] (37)

where S1 is defined in Definition B.2. Apply Lemma B.1(iii) with ζ(t) = −λ′t to get

− inf
f∈S1(coΥ(Z;θ))

E[−λ̃′f ]

= −E inf{−λ̃′t : t ∈ coΥ(Z; θ)}

= E sup{λ̃′t : t ∈ coΥ(Z; θ)}. (38)

Equation (37) and (38) imply

E sup{λ̃′t : t ∈ coΥ(Z; θ)} = sup{λ̃′t : t ∈ EIcoΥ(Z; θ)} < 0. (39)

In addition, since Υ(z; θ) ⊆ Rdim(r),

sup{λ̃′t : t ∈ coΥ(z; θ)} = sup{λ̃′t : t ∈ Υ(z; θ)}, (40)

equation (39) and (40) imply

inf
λ∈Rdim(r)

E sup{λ′t : t ∈ Υ(Z; θ)} < 0.

This contradicts θ ∈ Θ̃. This proves Θ̃ ⊆ Θ′I .
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To show Θ′I ⊆ Θ̃. Fix any θ ∈ Θ′I and any ε > 0, there exists a distribution H of (U,Z)

such that (i) ‖Er(U,Z; θ)‖ ≤ ε; (ii) PH(U ∈ Γ(Z; θ)) = 1; (iii) the marginal distribution of H
on Z equals to F . For any λ ∈ S,

−ε ≤ EH(λ′r(U,Z; θ))

≤ EH

{
sup

u∈Γ(Z;θ)
λ′r(u, Z; θ)

}

= E

{
sup

u∈Γ(Z;θ)
λ′r(u, Z; θ)

}

where the first inequality comes from Cauchy-Schwarz inequality, the second inequality comes
form PH(U ∈ Γ(Z; θ)) = 1, and the last equality follows from the fact that sup{λ′r(u, z; θ) :

u ∈ Γ(z; θ)} only depends on z. Hence,

−ε ≤ inf
λ∈S

E

[
sup

u∈Γ(Z;θ)
λ′r(u, Z; θ)

]
.

Since these holds with any ε > 0,

0 ≤ inf
λ∈S

E

[
sup

u∈Γ(Z;θ)
λ′r(u, Z; θ)

]
,

which implies θ ∈ Θ̃.

Proof of Lemma D.2. This is a classic result of the support function. See, for example, The-
orem 2.2.2 in Hiriart-Urruty and Lemaréchal (2001) for its proof.

Proof of Lemma D.3. Fix an arbitrary F ∈ F . In the following proof, I will abbreviate EF
as E, and Θ′I(F ) as Θ′I . Under Assumption 1, clΥ(Z; θ) is an integrable random closed set in
(Z,Z , F ). Suppose 0 ∈ coEclΥ(Z; θ) is true, I want to prove that θ ∈ Θ′I .

Fix an arbitrary ε > 0. By the fact that coA = coclA for any subset A in finite dimensional
Euclidean space, and that EclΥ(Z; θ) = cl(EIclΥ(Z; θ)) by Definition B.4, 0 ∈ coEclΥ(Z; θ)

must imply 0 ∈ coEIclΥ(Z; θ). Hence, there exists some v ∈ coEIclΥ(Z; θ) such that ‖v‖ ≤ ε.
By Carathéodory’s theorem, there must exists p0, p1, ..., pdim(r) ∈ [0, 1] and v0, ..., vdim(r) ∈
EIclΥ(Z; θ) such that

∑dim(r)
j=0 pj = 1 and v =

∑dim(r)
j=0 pjvj .For each j = 0, ...,dim(r), there

exists fj ∈ S1(clΥ(Z; θ)) such that vj = Efj(Z). Hence,∥∥∥∥∥∥
dim(r)∑
j=0

pjEfj(Z)

∥∥∥∥∥∥ ≤ ε.
By the definition of S1(clΥ(Z; θ)), each fj is measure and integrable in (Z,Z , F ).

Let T be a random variable independent with Z, which is supported on {0, 1, ...,dim(r)}
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and is distributed as the following,

P(T = j) = pj , ∀j ∈ {0, 1, ...,dim(r)}.

Construct random variable R ∈ Rdim(r) from T and Z as

R =

dim(r)∑
j=0

1{T = j}fj(Z).

LetH ′ denote the joint distribution of (Z,R) in measurable space (Z×Rdim(r),BZ×Rdim(r)).
By construction, H ′’s marginal distribution for Z equals F , and

PH′(R ∈ clΥ(Z; θ)) = 1.

Also,

‖EH′R‖ =

∥∥∥∥∫ EH′ [R|Z = z]dFZ

∥∥∥∥ =

∥∥∥∥∥∥E
dim(r)∑
j=0

pjfj(Z)

∥∥∥∥∥∥ =

∥∥∥∥∥∥
dim(r)∑
j=0

pjEfj(Z)

∥∥∥∥∥∥ ≤ ε.
Now consider H ′ as in the completion of probability space (Z × Rdim(r),BZ×Rdim(r) , H ′).

Since PH′(R ∈ clΥ(Z; θ)) = 1, the definition of Υ(Z; θ) implies

PH′
(

inf
u∈Γ(Z;θ)

‖r(u, Z; θ)−R‖ = 0
)

= 1

Since {(z, u) : u ∈ Γ(z; θ)} × Rdim(r) is a Borel set, and that (u, z, t) 7→ ‖r(u, z; θ)− t‖ is a
Borel measurable function in U ×Z ×Rdim(r), Lemma C.1 in Appendix C implies that there
exists a universally measurable function g : Z × Rdim(r) 7→ U , such that for any t ∈ Rdim(r)

and any z ∈ Z, g(z, t) ∈ Γ(z; θ) and∥∥r(g(z, t), z
)
− t
∥∥ ≤ ε+ inf

u∈Γ(z;θ)
‖r(u, z; θ)− t‖ .

Construct random variable U = g(Z,R). Let H be the joint distribution of (U,Z) in the
measurable space (U × Z,BU×Z). Then, PH(U ∈ Γ(Z; θ)) = 1 and

PH(‖r(U,Z; θ)−R‖ ≤ ε) = 1,

so that
‖EHr(U,Z; θ)‖ ≤ ε+ ‖EHR‖ ≤ 2ε

This completes the proof that θ ∈ Θ′I .
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D.3 Proof of Theorem 2

Before the main proof, I need an extra lemma, the proof of which is presented after the proof
of Theorem 2.

Lemma D.4. Suppose Assumption 1 and 2 hold. Then, for any F ∈ F , 0 ∈ coEF clΥ(Z; θ)

implies θ ∈ ΘI(F ).

Proof of Theorem 2. Fix an arbitrary F in F . Because I have shown in Theorem 1 that
Θ′I(F ) = Θ̃(F ), and because ΘI(F ) ⊆ Θ′I(F ), I only need to prove Θ̃(F ) ⊆ ΘI(F ). To show
Θ̃(F ) ⊆ ΘI(F ), suppose, for the purpose of contradiction, there exists some θ ∈ Θ̃(F ) such
that θ /∈ ΘI(F ). Then, by Lemma D.4, 0 /∈ coEF clΥ(Z; θ). Yet, as shown in the proof of
Theorem 1, this contradicts the fact that θ ∈ Θ̃(F ).

Proof of Lemma D.4. Fix an arbitrary F ∈ F . In the following proof, I will abbreviate EF
as E, and ΘI(F ) as ΘI . Recall also that EI stands for the Aumann integral.

The proof of this lemma is similar to that of Lemma D.3. One only needs to notice that
under Assumption 1 and 2, 0 ∈ coEclΥ(Z; θ) not only implies 0 ∈ coEIclΥ(Z; θ) but also
implies 0 ∈ coEIΥ(Z; θ). For clarity, I provide the entire proof.

Suppose 0 ∈ coEclΥ(Z; θ), I want to show θ ∈ ΘI . First of all, note that 0 ∈ coEclΥ(Z; θ)

is equivalent to 0 ∈ coEΥ(Z; θ) under Assumption 2(i). Moreover, Assumption 2(ii) together
with Lemma D.1 also implies Υ(Z; θ) is an integrably bounded random closed set. By Lemma
B.1(ii), EΥ(Z; θ) is a compact set and EΥ(Z; θ) = EIΥ(Z; θ). Since EΥ(Z; θ) ⊆ Rdim(r),
Carathéodory’s theorem implies coEΥ(Z; θ) is also compact. Hence, 0 ∈ coEclΥ(Z; θ) implies
0 ∈ coEIΥ(Z; θ).

Given 0 ∈ coEIΥ(Z; θ), Carathéodory’s theorem also implies that there must exists
p0, p1, ..., pdim(r) ∈ [0, 1] and v0, ..., vdim(r) ∈ EIΥ(Z; θ) such that

∑dim(r)
j=0 pj = 1 and

∑dim(r)
j=0 pjvj =

0.
For each j = 0, ...,dim(r), there exists fj ∈ S1(Υ(Z; θ)) such that vj = Efj(Z). Hence,

dim(r)∑
j=0

pjEfj(Z) = 0.

Recall that (Z,Z , F ) denotes the completion of Borel probability space (Z,BZ , F ). By the
definition of S1(Υ(Z; θ)), each fj is measure and integrable in (Z,Z , F ).

The remainder of the proof is similar to that in Lemma D.3. Let T be a random variable
independent of Z, which is supported on {0, 1, ...,dim(r)} and is distributed as the following,

P(T = j) = pj , ∀j ∈ {0, 1, ...,dim(r)}.
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Construct random variable R ∈ Rdim(r) from T and Z as

R =

dim(r)∑
j=0

1{T = j}fj(Z)

LetH ′ denote the joint distribution of (Z,R) in measurable space (Z×Rdim(r),BZ×Rdim(r)).
By construction, H ′’s marginal distribution for Z equals FZ , and

PH′(R ∈ Υ(Z; θ)) = 1,

and

EH′R =

∫
EH′ [R|Z = z]dFZ(z) = E

dim(r)∑
j=0

pjfj(Z) =

dim(r)∑
j=0

pjEfj(Z) = 0.

Now consider H ′ as in the completion of probability space (Z × Rdim(r),BZ×Rdim(r) , H ′).
Since PH′(R ∈ Υ(Z; θ)) = 1, the definition of Υ(Z; θ) implies

PH
(

min
u∈Γ(Z;θ)

‖r(u, Z; θ)−R‖ = 0
)

= 1.

Since {(z, u) : u ∈ Γ(z; θ)} × Rdim(r) is a Borel set, and (u, z, t) 7→ ‖r(u, z; θ)− t‖ is a Borel
measurable function in U ×Z×Rdim(r), Lemma C.1 in Appendix C implies that there exists a
universally measurable function g : Z×Rdim(r) 7→ U , such that, for any z ∈ Z and t ∈ Rdim(r),
g(z, t) ∈ Γ(z; θ). In addition, for any z ∈ Z and t ∈ Rdim(r) which satisfies

inf
u∈Γ(Z;θ)

‖r(u, z; θ)− t‖ = min
u∈Γ(z;θ)

‖r(u, z; θ)− t‖ ,

it must be true that
‖r(g(z, t), z)− t‖ = min

u∈Γ(z;θ)
‖r(u, z; θ)− t‖ .

Construct random variable U = g(Z,R). Let H be the joint distribution of (U,Z) in the
measurable space (U × Z,BU×Z). Then, PH(U ∈ Γ(Z; θ)) = 1 and

PH(r(U,Z; θ) = R) = 1,

so that
EHr(U,Z; θ) = EHR = 0

This completes the proof that θ ∈ ΘI .

D.4 Proof of Lemma 1

The proof of this result builds on the following lemmas, whose proofs will be presented later.
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Lemma D.5. Suppose set A is a nonempty closed convex set in Rd. Let intA denote the
interior of A. Then, x ∈ intA if and only if

inf
λ∈Rd:‖λ‖=1

sup{λ′(t− x) : t ∈ A} > 0. (41)

Note that (41) includes the case that infλ∈Rd:‖λ‖=1 sup{λ′(t− x) : t ∈ A} = +∞ which could
happen when A = Rd.

Lemma D.6. Suppose set A is a nonempty set in Rd. Suppose x ∈ int(coA), there there ex-
ists some ε > 0, a positive integer K > 0 and a1, ...., aK ∈ A, such that, x ∈ int(co{a′1, ..., a′K})
for any a′1, ..., a

′
K with ‖ai − a′i‖ < ε for i = 1, ...,K.

Lemma D.7. Suppose Assumption 1 hold. Then, for any F ∈ F , 0 ∈ int(coEF clΥ(Z; θ))

implies θ ∈ ΘI(F ).

Proof of Lemma 1. Fix an arbitrary F ∈ F . In the following of the proof, I will abbreviate
EF as E, and ΘI(F ) as ΘI . Recall also that EI stands for the Aumann integral. Lemma D.1
implies that clΥ(·; θ) is an integrable random closed set. The proof will be conducted in three
steps.
Step 1: Lemma 1(i) holds when dim(r1) = 0.

Suppose dim(r1) = 0. I need to prove that infλ∈S EFγ(λ, Z; θ) > 0 implies θ ∈ ΘI in this
step. Suppose infλ∈S EFγ(λ, Z; θ) > 0. I’m going to prove θ ∈ ΘI by contradiction.

Suppose, for the purpose of contradiction, that θ /∈ ΘI . Then, Lemma D.5 and D.7 implies
that

inf
λ∈S

sup{λ′t : t ∈ coEclΥ(Z; θ)} ≤ 0.

By Lemma B.1(iv), and the fact that coΥ(Z; θ) ⊆ coclΥ(Z; θ), and that EIcoΥ(Z; θ) ⊆
EcoΥ(Z; θ), we know

inf
λ∈S

sup{λ′t : t ∈ EIcoΥ(Z; θ)} ≤ 0 (42)

Since sup{λ′t : t ∈ EIcoΥ(Z; θ)} is a lower semi-continuous function of λ and S is compact,
there exists some λ̃ such that sup{λ̃′t : t ∈ EIcoΥ(Z; θ)} ≤ 0. Note that

sup{λ̃′t : t ∈ EIcoΥ(Z; θ)} = − inf
f∈S1(coΥ(Z;θ))

E[−λ̃′f ] (43)

where S1 is defined in Definition B.2. Apply Lemma B.1(iii) with ζ(t) = −λ′t to get

− inf
f∈S1(coΥ(Z;θ))

E[−λ̃′f ]

= −E inf{−λ̃′t : t ∈ coΥ(Z; θ)}

= E sup{λ̃′t : t ∈ coΥ(Z; θ)}. (44)
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Equation (43) and (44) imply

E sup{λ̃′t : t ∈ coΥ(Z; θ)} = sup{λ̃′t : t ∈ EIcoΥ(Z; θ)} ≤ 0. (45)

In addition, since Υ(z; θ) is a subset of the Euclidean space,

sup{λ̃′t : t ∈ coΥ(z; θ)} = sup{λ̃′t : t ∈ Υ(z; θ)}. (46)

Equation (45) and (46) then imply

inf
λ∈Rdim(r)

E sup{λ′t : t ∈ Υ(Z; θ)} ≤ 0.

This contradicts the fact that θ satisfy infλ∈S EFγ(λ, Z; θ) > 0.
Step 2: Lemma 1(i) holds when dim(r1) > 0.

Recall that H(θ, F ) is defined as the set of all joint distributions H for (U,Z) which satisfy
that PH [(U,Z) ∈ Γ(θ)] = 1 and that H’s marginal distribution for Z equals F .

• When dim(r2) = 0, for any H ∈ H(θ, F ), we have EH [r(U,Z; θ)] = EF [r1(Z; θ)].
Therefore, (2) is equivalent to EF [r1(Z; θ)] = 0. Hence, EF r1(Z; θ) = 0 implies θ ∈
ΘI(F ; Γ, r1) = ΘI(F ; Γ, r) by Definition 1.

• When dim(r2) > 0, note that (2) is equivalent to the following condition:

EF [r1(Z; θ)] = 0 and inf
H∈H(θ,F )

‖EH [r2(U,Z; θ)]‖ = 0.

which implies that ΘI(F ; Γ, r) = ΘI(F ; Γ, r1) ∩ΘI(F ; Γ, r2) by Definition 1. Following
the same proof in the previous paragraph, we know that EF [r1(Z; θ)] = 0 implies θ ∈
ΘI(F ; Γ, r1). Following the same proof in Step 1, we know that infλ∈S2 EFγ2(λ, Z; θ) > 0

implies θ ∈ ΘI(F ; Γ, r2). As a result, EF [r1(Z; θ)] = 0 and infλ∈S2 EFγ2(λ, Z; θ) > 0

implies θ ∈ ΘI(F ; Γ, r).

Step 1 and 2 completes the proof for Lemma 1(i).
Step 3: Lemma 1(ii) holds.

Suppose θ ∈ Θ′I(F )\ΘI(F ). Because θ ∈ Θ′I(F ), we know

EF [r1(Z; θ)] = 0 and inf
λ∈S2

EFγ2(λ, Z; θ) ≥ 0.

Moreover, θ /∈ ΘI(F ) implies that there is no

EF [r1(Z; θ)] = 0 and inf
λ∈S2

EFγ2(λ, Z; θ) > 0.

Hence, we must have EF [r1(Z; θ)] = 0 and infλ∈S2 EFγ2(λ, Z; θ) = 0.

Proof of Lemma D.5. By Theorem 2.2.3 (on page 138) in Hiriart-Urruty and Lemaréchal
(2001), we know that x ∈ intA if and only if for any λ with ‖λ‖ = 1, sup{λ′(t−x) : t ∈ A} > 0.
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Therefore, I only need to show that sup{λ′(t− x) : t ∈ A} > 0 for any λ with ‖λ‖ = 1 if and
only if

inf
λ∈Rd:‖λ‖=1

sup{λ′(t− x) : t ∈ A} > 0.

The "if" part of this claim follows from the definition of inf. To show the "only if" part of
this claim, note that sup{λ′(t− x) : t ∈ A} is a lower semi-continuous function of λ and that
{λ ∈ Rd : ‖λ‖ = 1} is a compact set. Note also that there must be infλ∈Rd:‖λ‖=1 sup{λ′(t−x) :

t ∈ A} >= 0. Therefore, if infλ∈Rd:‖λ‖=1 sup{λ′(t − x) : t ∈ A} < +∞, this infimum is
achieved by some λ with ‖λ‖ = 1 so that infλ∈Rd:‖λ‖=1 sup{λ′(t − x) : t ∈ A} > 0. If
infλ∈Rd:‖λ‖=1 sup{λ′(t−x) : t ∈ A} = +∞, then we automatically have infλ∈Rd:‖λ‖=1 sup{λ′(t−
x) : t ∈ A} > 0.

Proof of Lemma D.6. By Gustin (1947), there exists some a1, ..., aK ∈ A such that x is in
the interior of co{a1, ..., aK} and K ≤ 2d. By Lemma D.5, we know that λ′(ai − x) > 0 for
all λ with ‖λ‖ = 1 and for all i = 1, ...,K. Therefore, there exists some ε > 0 such that
for any i = 1, ...,K and for any a′i with ‖a′i − ai‖ < ε, we have λ′(a′i − x) > 0. By Lemma
D.5, this is equivalent to that x ∈ int(co{a′1, ..., a′K}) for any a′1, ..., a′K with ‖ai − a′i‖ < ε for
i = 1, ...,K.

Proof of Lemma D.7. Fix an arbitrary F ∈ F . In the following, I will abbreviate EF as
E, and ΘI(F ) as ΘI . Recall that EI stands for the Aumann integral. Recall also that the
probability space (Z,Z , F ) denotes the completion of Borel probability space (Z,BZ , F ).

Under Assumption 1, clΥ(Z; θ) is an integrable random closed set in (Z,Z , FZ). Suppose
0 ∈ int(coEclΥ(Z; θ)) is true, I want to prove that θ ∈ ΘI .

Because coA = coclA for any subset A in an Euclidean space, and because EclΥ(Z; θ) =

cl(EIclΥ(Z; θ)) by Definition B.4, 0 ∈ int(coEclΥ(Z; θ)) imply 0 ∈ int (coEIclΥ(Z; θ)). Fur-
thermore, because Proposition 2.1.8 in Hiriart-Urruty and Lemaréchal (2001) implies that
int(coA) = int(coA) for any subset A in an Euclidean space, 0 ∈ int (coEIclΥ(Z; θ)) implies
that 0 ∈ int (coEIclΥ(Z; θ)). By Lemma D.6, we know there exists some ε > 0, some pos-
itive integer K and some v1, ..., vK ∈ EIclΥ(Z; θ) such that 0 ∈ int(co{ṽ1, ..., ṽK}) for any
(ṽ1, ..., ṽK) with ‖ṽi − vi‖ < ε for any i = 1, ...,K.

For any k = 1, ...,K. Because vk ∈ EIclΥ(Z; θ), there exists fk ∈ S1(clΥ(Z; θ)) such that
vk = Efk(Z). Because every measurable function in (Z,Z , FZ) can be well approximated
by a Borel measurable function, there exists some Borel function f̃k such that P(fk(Z) =

f̃k(Z)) = 1. Therefore, we know Ef̃k(Z) = vk and

P
(

inf
u∈Γ(Z;θ)

∥∥∥r(u, Z; θ)− f̃k(Z)
∥∥∥ = 0

)
= 1.

Since {(z, u) : u ∈ Γ(z; θ)} ×Rdim(r) is a Borel set, and that (u, z) 7→
∥∥∥r(u, z; θ)− f̃k(z)∥∥∥ is a

Borel measurable function, Lemma C.1 in Appendix C implies that there exists a universally
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measurable function g : Z 7→ U , such that for almost every z ∈ Z, gk(z) ∈ Γ(z; θ) and∥∥∥r(gk(z), z)− f̃k(z)∥∥∥ ≤ ε+ inf
u∈Γ(z;θ)

∥∥∥r(u, z; θ)− f̃k(z)∥∥∥ .
By the construction of gk, ‖vk − Er(gk(Z), Z)‖ < ε.

As a result, I have shown that there exists function g1, ..., gK in (Z,Z , FZ) such that
P(gk(Z) ∈ Γ(Z; θ)) = 1 for each k = 1, ...,K and 0 ∈ co{Er(g1(Z), Z), ...,Er(gK(Z), Z)}.
This implies that there exists a joint distribution H for (U,Z) such that (i) H’s marginal
distribution for Z is FZ , (ii) PH (U ∈ Γ(Z; θ)) = 1 and (iii) EHr(U,Z; θ) = 0. Hence, θ ∈
ΘI .

E Proof of Theorem 3

Define set F∗θ as

F∗θ :=

{
F ∈ F : EF [r1(Z; θ)] = 0 and inf

λ∈S2
EFγ2(λ, Z; θ) > 0.

}
Since (15) holds, we know F∗θ is nonempty. By Lemma 1, F∗θ ⊆ Fθ ⊆ F ′θ. Hence, both
supF∈Fθ EFφn and supF∈F ′θ

EFφn are well defined and finite. F∗θ ⊆ Fθ ⊆ F ′θ also implies that
supF∈F∗θ

EFφn ≤ supF∈Fθ EFφn ≤ supF∈F ′θ
EFφn. Therefore, to show the desired result, we

only need to show that for any F ∈ F ′θ, EFφn ≤ supF∈F∗θ
EFφn.

For each F ∈ F , define Define ψ(F ) = infλ∈S2 EFγ2(λ, Z; θ). For any F1, F2 ∈ F , let
Fδ = δF1 + (1− δ)F2 for any δ ∈ [0, 1]. Then,

ψ(Fδ) = inf
λ∈S2

(
δEF1γ2(λ, Z; θ) + (1− δ)EF2γ2(λ, Z; θ)

)
≥ inf

λ∈S2
δEF1γ2(λ, Z; θ) + inf

λ∈S2
(1− δ)EF2γ2(λ, Z; θ)

= δψ(F1) + (1− δ)ψ(F2)

Therefore, ψ is a concave function.
Now, fix an arbitrary F ∈ F ′θ. For any F ∗ ∈ F∗ and any k ≥ 1, define Fk := (1− 1

k )F+ 1
kF
∗.

Since F ∈ F ′θ, EF [r1(Z; θ)] = 0 and infλ∈S2 EFγ2(λ, Z; θ) ≥ 0. Therefore, the concavity of ψ
implies that Fk ∈ F∗θ for all k ≥ 1. Since EFφn = limk→∞ EFkφn, we know

EFφn ≤ sup
k≥1

EFkφn ≤ sup
F ′∈F∗

EF ′φn.

This completes the proof.
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F Proof of Theorem 4

I first prove the second result, then prove the first result.
The second result in the theorem follows immediately from the following lemma, which

will be proved at the end of this section.

Lemma F.1. Suppose Assumption 1 hold and F is convex. Let θ be an arbitrary parameter
in Θ and partition r(u, z; θ) = (r1(z; θ), r2(u, z; θ). Suppose F ′θ is nonempty, and that the
inequality (15) fails to hold for all F ∈ F . Then,

(i) there exists some λ̃ ∈ S2 such that EFγ2(λ̃, Z; θ) = 0 for all F ∈ F ′θ.

(ii) model (Γ, r) is reducible at θ. In particular, for any λ2, ..., λdim(r2) such that λ̃, λ2, ..., λdim(r2)

are linearly independent, define reduced model (Γ̃, r̃) as

Γ̃(θ) =

{
(u, z) ∈ Γ(θ) : u ∈ arg max

u∈Γ(z;θ)
λ̃′r2(u, z; θ)

}
,

r̃(u, z; θ) =



r1(Z; θ)

γ2(λ̃, z; θ)

λ′2r(u, z; θ)

λ′3r(u, z; θ)
...

λ′dim(r)r(u, z; θ)


.

Then, for any F ∈ F , θ ∈ ΘI(F ; Γ, r) if and only if θ ∈ ΘI(F ; Γ̃, γ̃).

To prove the first result in the theorem, suppose the model (Γ, r) is irreducible at θ.
Consider the following cases:

• When F ′θ is empty, Fθ is also empty so that both θ ∈ ΘI(F ) and θ ∈ Θ′I(F ) are false
for any F ∈ F , which implies that θ ∈ Θ′I and θ ∈ ΘI cannot be distinguished in finite
samples.

• When F ′θ is nonempty, the second result of this theorem implies that there exists some
F ∈ F which satisfies (15). Theorem 3 then implies that θ ∈ Θ′I and θ ∈ ΘI cannot be
distinguished in finite samples.

Since θ ∈ Θ′I and θ ∈ ΘI are indistinguishable in both cases, the proof is now complete.

Proof of Lemma F.1. Fix θ to be an arbitrary parameter with which (15) does not hold for
all F ∈ F . The proof will be divided into two parts: Part 1 deals with the first part of the
result and Part 2 deals with the second part of the result.
Part 1 First of all, the fact that F ′θ is nonempty and (15) fails to hold for all F ∈ F implies
that dim(r2) > 0. For any F ∈ F ′θ, Theorem 1 implies that infλ∈S EFγ(λ, Z; θ) ≥ 0, which is
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equivalent to
EF [r1(Z; θ)] = 0 and inf

λ∈S2
EFγ2(λ, Z; θ) ≥ 0.

Because (15) fails to hold for all F ∈ F , we know that for any F ∈ F ′θ, infλ∈S2 EFγ2(λ, Z; θ) =

0. Since γ2(λ, Z; θ) is lower semi-continuous in λ and S2 is a compact set, we know that for
each F ∈ F ′θ, there exists some λ ∈ S2 such that EFγ2(λ, Z; θ) = 0. For each F ∈ F ′θ, define
Λ(F ) := {λ ∈ S2 : EFγ2(λ, Z; θ) = 0}. Then, for each F ∈ F ′θ, Λ(F ) is nonempty. To
show the first result of Lemma F.1, I only need to show that there exists some F ∗ ∈ F ′θ such
that ∩F∈F ′θΛ(F ) = Λ(F ∗). When F ′θ only contains one element F ∗, it’s trivially true that
∩F∈F ′θΛ(F ) = Λ(F ∗). So, I suppose F ′θ contains at least two elements in the remaining of
the proof in this part.

Note that F ′θ is a convex set because F is convex and F ′θ = {F ∈ F : EFγ(λ, Z; θ) ≥
0,∀λ ∈ S}. The relative interior riF ′θ defined as riF ′θ := {F ∈ F ′θ : ∀F ′ ∈ F ′θ, ∃δ >

1 such that δF + (1 − δ)F ′ ∈ F ′θ} should contain at least two elements because F ′θ contains
at least two elements.

To proceed, I claim that for any F1, F2 ∈ F ′θ and any δ ∈ (0, 1), Λ(F1) ∩ Λ(F2) = Λ(Fδ)

where Fδ := δF1 + (1 − δ)F2. To see why this is true, note that for any λ ∈ Λ(F1) ∩ Λ(F2),
EFδγ2(λ, Z; θ) = δEF1γ2(λ, Z; θ) + (1− δ)EF2γ2(λ, Z; θ) = 0. Hence, Λ(Fδ) ⊇ Λ(F1) ∩ Λ(F2).
Now, for any λ ∈ S2\(Λ(F1) ∩ Λ(F2)), we know the following is true:

• EF1γ2(λ, Z; θ) ≥ 0, because F1 ∈ F ′θ;

• EF2γ2(λ, Z; θ) ≥ 0, because F1 ∈ F ′θ;

• either EF1γ2(λ, Z; θ) > 0 or EF2γ2(λ, Z; θ) > 0, because λ /∈ Λ(F1) ∩ Λ(F2).

Therefore, EFδγ2(λ, Z; θ) = δEF1γ2(λ, Z; θ) + (1 − δ)EF2γ2(λ, Z; θ) > 0. Hence, for any
λ ∈ S2\(Λ(F1)∩Λ(F2)), λ /∈ Λ(Fδ). Hence, Λ(Fδ) ⊆ Λ(F1)∩Λ(F2). Combine both results, I
conclude that Λ(F1) ∩ Λ(F2) = Λ(Fδ) for any δ ∈ (0, 1).

Next, I claim that for any two F1, F2 in riF ′θ, Λ(F1) = Λ(F2). To see why this is true,
note that by the definition of riF ′θ, there must exists F3 and F4 in F ′θ and δ1, δ2 ∈ (0, 1) such
that F1 = δ1F3 + (1 − δ1)F4 and F2 = δ2F3 + (1 − δ2)F4. By the preceding result, we know
Λ(F1) = Λ(F2) = Λ(F3) ∩ Λ(F4).

Finally, let F ∗ be an arbitrary element in riF ′θ. I claim that ∩F∈F ′θΛ(F ) = Λ(F ∗). To see
why this is true, note that for any F ∈ F ′θ, there must exists F ′ ∈ F ′θ with F ′ 6= F because F ′θ
is assumed to have at least two elements. Because 1

2F + 1
2F
′ ∈ riFθ, the claims which I proved

in the above paragraphs implies that Λ(F ∗) = Λ(F ) ∩ Λ(F ′). As a result, Λ(F ∗) ⊆ Λ(F ) for
all F ∈ Fθ. Hence, ∩F∈F ′θΛ(F ) = Λ(F ∗).
Part 2 I am going to prove the second part of the result in two steps.

Step 1: ∀F ∈ F , θ ∈ ΘI(F ; Γ̃, r̃) implies that θ ∈ ΘI(F ; Γ, r). To prove this result, sup-
pose θ ∈ ΘI(F ; Γ̃, r̃) for some F ∈ F . Because of the definition of ΘI(F ; Γ̃, r̃), there exists
some joint distribution H of (U,Z) such that (i) PH((U,Z) ∈ Γ̃(θ)) = 1; (ii) EHr1(Z; θ) = 0,
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EHγ2(λ̃, Z; θ) = 0 and EHλ′ir2(U,Z; θ) = 0 for i = 2, ...,dim(r2); (iii) the marginal distribu-
tion of H for Z is F .

Because of the construction of Γ̃ in this lemma, and because PH((U,Z) ∈ Γ̃(θ)) = 1, we
know that PH(λ′1r(U,Z; θ) = γ2(λ̃, Z; θ)) = 1. Therefore, in addition to EHλ′ir2(U,Z; θ) = 0

for each i = 2, ...,dim(r2), we also have EH λ̃′r2(U,Z; θ) = 0. Because λ̃, λ2, ..., λdim(r2)

are linearly independent, this implies that EHr2(U,Z; θ) = 0 ∈ Rdim(r2). Moreover, since
Γ̃(θ) ⊆ Γ(θ), PH((U,Z) ∈ Γ(θ)) = 1. As a result, θ ∈ ΘI(F ; Γ, r).

Step 2: ∀F ∈ F , θ ∈ ΘI(F ; Γ, r) implies that θ ∈ ΘI(F ; Γ̃, r̃). To prove this result,
suppose θ ∈ ΘI(F ; Γ, r) for some F ∈ Fθ. By the definition of ΘI(F ; Γ, r), there exists some
joint distribution H of (U,Z) such that (i) PH((U,Z) ∈ Γ(θ)) = 1; (ii) EHr1(Z; θ) = 0 and
EHr2(U,Z; θ) = 0; and (iii) the marginal distribution of H for Z is F . Note that since
F ∈ Fθ ⊆ F ′θ, we know EFγ2(λ̃, Z; θ) = 0 by the construction of λ̃.

Define φ(u, z; θ) = γ2(λ̃, z; θ)− λ̃′r2(u, z; θ). To show θ ∈ ΘI(F ; Γ̃, r̃), I only need to verify
that PH(φ(U,Z; θ) = 0) = 1. By the construction of H, there is EH λ̃′r2(U,Z; θ) = 0. More-
over, by the construction of λ̃, there is EFγ2(λ̃, Z; θ) = 0 which implies that EHγ2(λ̃, Z; θ) = 0.
Therefore, we have EHφ(U,Z; θ) = 0. Recall γ2(λ̃, z; θ) := supu∈Γ(z;θ) λ̃

′r2(u, z; θ). Be-
cause PH((U,Z) ∈ Γ(θ)) = 1, there is PH(φ(U,Z; θ) ≥ 0) = 1. Combine this result with
EHφ(U,Z; θ) = 0, it must be true that PH(φ(U,Z; θ) = 0) = 1. This proves the desired
result.
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